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ABSTRACT

The likelihood ratio method allows estimation of the
expected performance and associated derivatives of
a stochastic system for various values of the param-
eters from a single simulation run. In this method
the choice of the reference value vq of the parameter
vector, which is employed in the generated sample,
is crucial. In this paper we discuss how to choose
the reference vector vg in order to minimize the vari-
ance of the considered likelihood ratio estimators. We
show that for exponential families of distributions this
variance is a convex function of vy. We also show that
for some exponential families (e.g. Gamma distribu-
tions) there is an order relation between the involved
parameters and their optimal reference values.

1 INTRODUCTION

Let
f(v>=IEv{L<Y)}:/uy)f(y,v)dy (1)

be the expected performance of a stochastic system
with L(Y') being a sample performance driven by an
input vector Y having a probability distribution func-
tion f(y,v).

Assume that £(v) is too complex, and must be eval-
uated by simulation. To do so, one generates a ran-
dom sample Y1, ...,Y n from f(y,v) for a particular
value v from a permissible parameter set V' and then
estimates £(v) by the sample mean

Of course, such a procedure requires generation of a
new sample every time £(v) should be estimated for a
new value of the paprameter vector v. The likelihood
ratio method on the other hand allows estimation of
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£(v) for various values of v from a single simulation
run. That is, let us choose a particular v € V and
consider the likelihood ratio function

fly,v)

f(ywvo) .

Then it is not difficult to show that

W(y,v) =

{(v) = Ep, {L(Z)W(Z,v)}, (3)
where Z ~ f(z,vq). We shall call vy the reference
parameter vector.

By generating now a sample Z;,..,Zxn from
f(z,v0) we can estimate ¢(v) by the corresponding
sample mean

N
In(v) = N7V L(Z)W(Zs,v).

i=1

(4)

Moreover, under suitable regularity conditions ensur-
ing interchangeability of the differentiation and inte-
gration operators in the right hand side of (3) we can
estimate the gradient V{(v) of the expected perfor-
mance by

N
Vin(v)= N~! Z L(Z))VW(Z;,v).

=1

(5)

The above approach can be extended to dynamic
systems as follows. Consider a Discrete Event Dy-
namic System (DEDS) driven by the input sequence
of independent identically distributed random vec-
tors Y1,Y o, ..., with the common pdf f(y,v). Let
L, = L,(Y,) be a corresponding output process. Here
Y, = (Y,,..,Y,) represents a history of the input
process up to time ¢ and L.(-) is a sequence of real
valued functions. Let 7 be a stopping time for the

input process Y'1,Y 9, ..., and consider
Eu{> /., L
{(v) = M (6)
]E"_)T
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For example, if {L;} is a discrete time regenerative
process with the regenerative cycle of length 7, then
it 1s a well known result in the renewal theory that
the expected steady-state performance ( long-run av-
erage) of L, is given by the right hand side of (6) (e.g.,
Ross, 1983). It is possible to show (see Asmussen and
Rubinstein, 1992; Rubinstein and Shapiro, 1992) that
£1(v) = Eu{}_,_, Li} can be represented in the form

6(v) = Boo{)_ Ll Z)Wi(Z,,0)},  (T)

t=1

where

Wi(z,,v) = %

and
t

1(24,v) II (zi,v).

The function £5(v) = [Ey 7 can be written in a similar
way by taking L,(z,) = 1, and hence £(v) can be
represented in the form

]E’UQ{Zt L W‘(Z"v)}.
]E’[)D{Zt IWt Zt,v)}

Using representation (8) one can estimate £(v) for
different values of v, from a single simulation run,
by the ratio ZlN(v)/EQN(‘U) with f1x(v) and fon(v)
being the corresponding sample mean estimators of
¢1(v) and €5(v), respectively.

In the above method the choice of the reference
value vy of the parameter vector is crucial. A bad
choice of vy can result in very large variances of the
corresponding estimators and consequently can lead
to inaccurate estimation procedures.

Consider, for example, the estimator £y (v) defined
in (4). In order to improve accuracy of this esti-
mator one can try to minimize its variance. Vari-
ance of fx(v) is given by N~! times the variance
of L(Z)W(Z,v). Note that Ey {L(Z)W(Z,v)} is
equal to £(v) and hence 1s independent of vg. There-
fore the problem of minimization of the variance of
xn(v) is equivalent to minimization of the function

$(v,v0) = W(Z,v))*} (9)

€(v) =

(8)

Ev,{[L(2)

with respect to vy.

In this paper we discuss how to choose the refer-
ence vector vy in order to minimize variance of the
considered estimators. This problem can be also con-
sidered in the context of importance sampling scheme
(cf. Glynn and Iglehart, 1989). We show that for ex-
ponential families of distributions the variance of the
likelihood ratio estimators is a convez function of vy.

Typically this implies existence of a unique reference
value v§ wich minimizes the variance. We also show
that for some exponential families (e.g. Gamma dis-
tributions) there exists an order relation between the
parameter v and the corresponding optimal reference
value vyg.

2 CONVEXITY RESULTS

In this section we deal with exponential families of
distributions in the canonical form. That is, we con-
sider probability density functions of the form

f(y,v) = c(v)ezp{D_vit;(y)}h(y)  (10)

ji=1

parameterized by v = (v1,...,vn). We show that for
such families of distributions, variances of the like-
lihood ratio estimators are convex functions with re-
spect to vg. Let us start by considering the estimator
fn(v) and the corresponding function ¢(v,vg) given
in (9).

Theorem 2.1 Suppose that the random vector'Y is
distributed according 1o an exponential family in the
canonical form (10) and let ¢(v,vo) be the corre-
sponding function defined in (9). Then for any per-
missible v the function ¢(v,vg) is conver in vq.

Proof It immediately follows from the definition of
¢(v,vp) and (10) that

¢(v,v0) = c(v)? [ L(y)*c(vo)~'x
exp{3°7_ 1 (2v; — vo;)tj(y)}h(y)dy

Also, since ff(y,v)dy = 1, we have that

c(vo)~ /&Lp{Z vo;tj(z)}h(2)dz

j=1

Putting these two equations together we obtain

(v, vg) =
c(v)* [ [ L(y "ew{Z"-l[%J (y) (11)
+v0; (t;(2) y))]}h (y)h( )dydz-

Now, for any linear function g(z) of « € RY, the func-
tion exp{g(x)} is convex in . Therefore, since L(y)?
is nonnegative, for any fixed y, z and v the function
under the second integral sign in (11) is convex in vo.
This implies convexity of ¢(v,-). O

The above result can be exten_ded in several direc-
tions. Consider the estimator VZy (v) defined in (5).
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In this case one can be interested in minimization of
the sum of variances of the components of Vi (v)
which is given by the trace of the covariance matrix
of Ven(v). Since Ey,{L(Z)VW(Z,v)} is equal to
V{(v) we have that this is equivalent to minimization
of the function

4’1(”,1’0) =

trEv, {L(2)2YW(Z,0)VW(Z,v)}. (12
Moreover, we have that
VW(Z,v) = W(Z,v)S(Z,v), where

Vi(yv)
s )= ———= = VI ,
(y,v) Fy.0) 09 f(y,v)

is the score function of the parametric family f(y,v),
and hence

#1(v,v0) = trEy,{L(Z)*W(Z,v)?x

SM(Z,v)8M(Z,v)}.

Taking into account that trS$™V(z v)SV)(z,v) is
nonnegative for any z and v, we can conclude as in
Theorem 2.1 that ¢;(v,vg) is conver in vg.

As another extension suppose that several sam-
ple functions L;(Y), ¢ = 1,...,k, are driven by the
same input vector Y. Let ¢;(v) = Eu{L;(Y)} =
Ev,{L:(Z)W(Z,v)} be the corresponding expected
performances and consider

£(v) = g4y (v), ..., £e(v)),

with g(z;,...,zx) being a real valued function of k
variables. Take, for example, g(z1,z5) = z;/z,. The
corresponding estimator of £(v) can be written as

In(v) = g(bin(v), ..., Len (V)),

where £;x(v) are the likelihood ratio estimators of
¢(v), i =1, ..., k. By the Delta Theorem (e.g., Rao,
1973), we have that N/2(Zy(v)—£(v)) is distributed
asymptotically multivariate normal with mean zero
and variance

o?(v,v9) = vary,{a1 L(Z)W(Z,v) + ...

+ar Le(Z)W(Z,v)},

where a; = 9g(x)/0z; at © = (£1(v),...,Lk(v)). In
this case, similarly to Theorem 2.1 it is possible to
prove that o%(v,vy) is convex in vo.

Let us consider now the expected performance
¢1(v) represented in the form (7). Variance of the
corresponding estimator is given by N~! times the

variance of 3 _, L{(Z,)Wi(Z,,v).

Theorem 2.2 Suppose that the inpul sequence
Y, Y., .., is distributed according to an exponential
family in the canonical form (10). Then the variance
function

alz(v,vo) =

vare {50, L(Z) W2 v)) D)

15 conver 1n vy provided the oulpul process {L;} is
nonnegative valued.

Proof. This theorem can be easily proved by argu-
ments and derivations similar to those of Theorem
2.1. To do so, consider the random variable

X = ZT: Lt(gt)wt(gt’v)'

t=1
Note that since ¢1(v) = IEp, X we have
vary, X = By, {XV?%} - £ (v)?,

and hence vary,X depends on vy only through the
second moment Ey,{X?}. We show now that for the
pdf f(y,v) in the form (10), E4,{\?} is a convex
function of vy provided all Li(y,) are nonnegative
valued.

Denoting by I4 the indicator function of an event
A, we can write

0o k
Xt o= Z(Z LtWt)EI[T:k]

k=1 t=1

= Z( Z LsLiWsWt)I[r:k]

k=1 s,t<k

= Z Z LsLtWJWtI['r:k]

s,t=1k>max(s,t)

el — —

= Z LsLthth[TZmaI(s,t)]‘ (14)
t=1

&

Therefore it will be sufficient to show that
Ev,{LsL:W,Welfr 54}

1s a convex function of vy for any s < ¢t. Now for
s <t we have

Ev {Ls L:W, Wy lj;5q) =
/WMW&MW@MM&W%Z

_ fa(iavv)ft(itlv)
._/H(it) (21 v0) dz,, (15)
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where
H(z,) = Ls(is)Lt(it)I[TZt](Et)

1s a nonnegative valued function. We also have that

f.!( u'l’o) b=
c(vo)™terp{3i_) 2072y —vots (2 ha(z,) 7"

where h(z,) = [[/_, h(2;) and c(vo) is the normal-
1zation factor,

c(vo)™! =

Jern{3Zi, Z;=1 vo;{; (@i) }hy(z,)dz

Putting all this together we obtain

IE’l’o{LsLt”’si f 1[721]} =

// (2, x,,v)exp{a(z,, &, vo)}dz,dz,,

where A(z,,x,,v) is a nonnegative valued function
independent of vo and a(z,,z,,vo) is a function lin-
ear in vy for every fixed z, and z,. It follows that
the function inside the above mtegral 1s convex in vg.
Consequently the expectation Eq,{L, L, W, th[r>t]}
is convex in vo and hence the proof is complete. O

Note that since .
VWt(z,,v) = IVt( l,v)S(t )(gl,v), where

-(1)
S, (z,,v) ZS”) (zj,v),

the above convexity result can be extended to the
trace of the covariance matrix of V& n(v) as well.
Note also that this convexity result holds for the par-
ticular case when the stopping time 7 is fixed (non-
stochastic).

Let us consider now
the ratio estimator £)n(v)/fan(v) of £(v) given in
(8). By the Delta Theorem its asymptotic variance is
N~1! times the variance

a?(v, vg) =

vmvo{azt L VV;(Z,,I’)
b, Wil zt,v)} =

= a%varp {1, Mi(Z,)Wi(Z,,v)},

(16)

where a = 1/{5(v), b =
£y (v)/la(v).

Unfortunately, Theorem 2.2 can not be directly ex-
tended to (v, vg) given in the form (16), because
M, are not nonnegative valued. Therefore, convex-
ity of 0?(v,-) in the form (16) still remains an open
problem.

£(v)/03(v) and M, = L, -

3 OPTIMAL CHOICE OF THE REFER-
ENCE PARAMETERS

The results of the previous section imply that the
problem of minimization of the variance of the likeli-
hood ratio estimators is a convex problem, provided
Sf(y,v) comes from an exponential family given in the
canonical form and the permissible parameter set V
is convex. In this section we show that for some ex-
ponential families there is an order relation between
v and the corresponding optimal reference value v;.

Consider Gamma distributions with the corre-
sponding density function

A/iyﬂ—le—/\y
rp)

Note that this is an exponential family in the canon-
ical form with two parameters A > 0 and 3 > 0.
We assume further that the parameter § is fized and
consider this family with respect to the parameter A
only.

fly, A p) = y>0.

Proposition 3.1 Consider an outpul process L, =
Li(Y,) driven by the inpul sequence Y1,Ya, .., of
ud random variables distributed Gamma(X,3). Sup-
pose that L,(gt), t = 1,2,..., are nonnegative val-
ued and monotonically mereasing in every component
¥i, 1 =1,...1, ofy and that the indicator function
Iir>y(y ) 18 nondecreasmg . every component ofy
Then 1here erists a unique minimizer Ay of the func-
fion

IE)\O{[ZL

which satisfies Ay < A.

Wi(Z, M} (17)

Proof Let us first observe that it follows from the
results of section 2 that the function (\g) is convex.
We show now that its derivative dp(Ag)/dXo at Ao =
A is positive. Since (Xg) is convex and tends to
infinity as \g approaches zero, this will imply that
the minimizer A§ exists and is less than A. It is not
difficult to verify here that in fact ¢(Xg) is strictly
convex and hence uniqueness of A\j will follow.
By (15) we have that

Ex, {Ls LW, Wtf[r>t]} =

f (2, Mz, )
f[{ ;g fs(i,;_‘_’\o)‘ dntl

where
H(it) = Ls(is)Lt(it)I[TZt](it)

is monotonically increasing in every component of z;.
It follows that

I(Ai_o[lE/\o{L L W WII[TZt]}]lA():/\ =

18
= [ H(z)8 (2, M fulzy, Nz, .
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Taking (14) into account, it is readily seen that in
order to prove the positivity of dp(Xg)/dAo at Ag = A
it is sufficient to show that for s < ¢ the expression
given in the right hand side of (18) is positive. To
proceed, we write the right hand side of (18) in the
form

LB~ f(z14 ..+ 2 — sﬁ/\~ YH(
/\tﬁe_(’\lz‘+"'+’\':‘)n l" —ld
MPT(B t Soio [ i )X
H(it)nj_—_l(e_»’:j )d:t~

1) X

IN

|n
Il

Therefore it will be sufficient to show that each inte-
gral in the above sum is positive for i = 1,...,5s. We
prove this for ¢ = 1. The proof for the remaining
values of 7 1s similar. We have

[ l—m-l)H(_nH,_l( P dz, =
fl’[, =2 -L’*Jﬁ ' )(fy 7 (21 — BATY)x
H(z,)e 1 2P~ dz)dzy  dzy.

Now, for fixed =9, ..., z;, integration by parts gives us
the inner integral in the form

/\—1/ :fe_’\z‘dH(zl,:g,...,:,).
0

Since for fixed z-,..., z;, the function H(zy, 20, ..., 2¢)
is monotonically increasing in zj, this integral is posi-
tive. Thus, the corresponding multiple integral is also
positive and the proof is complete. O

Note that the result of Proposition 3.1 holds in the
particular case when 7 is fixed (nonstochastic). In
this case the indicator functions Ij,»(-) are constants
and the condition that Ij;>,)(-) must be nondecreas-
ing functions holds automatically.

Let, for example, L, be the waiting time process in
a GI/G/c queue with ¢ servers. The input sequence
is given here by the two-dimensional random vectors

i = (Y1, Y2), 1 = 1,2,..., with independent com-
ponents Y;; and Yy;, Y}; being the service time of the
it" customer, Y5; being the interarrival time between

h and (i— 1)”‘ customers and 7 being the number of
customers served during the busy period. Suppose,
for example, that Yj; are distributed exponentially
with f(y,A) = XAe™*¥ ie. consider a G/M/c queue
with service rate A. (Note that the exponential dis-
tribution is a particular case of Gamma distributions
with 8 = 1.) Then conditions of Proposition 3.1 are
satisfied and hence we obtain here that the optimal
value A} of the reference parameter Ao, which mini-
mizes function ¢(Xg) defined in (17), is less than A.

Note that if we assume in Proposition 3.1 that
Lt(gt) are nonnegative and monotonically decreasing

In every component of Y, and I[th](gt) are nonin-
creasing in every component of y , then similar ar-
guments show that the corresponding minimizer Aj
of ¢(Ag) is greater than A. Consider, for example,
again the waliting time process in a GI/G/c queue and
suppose now that the interarrival times Y5; are dis-
tributed exponentially, i.e. consider an M/G/c queue
with interarrival rate A. Then the above assumptions
hold and the optimal value A of the reference param-
eter will be greater than A.

As an another example suppose now that the ser-
vice times Y7; and the interarrival times Y5; are in-
dependent, each distributed Gamma with respective
parameters A1, 57 and Ao, 3>. Let 37 and (3, be fixed
and consider the corresponding variance of £, n(v),
v = A = (A1, A1), as a function of the reference value
Ao = (Ao1, Ao2) of the parameter vector A. We obtain
then that this variance is a convex function of Ag and
the corresponding partial derivatives with respect to
Ao1 at Ag; = Ay are positive while the partial deriva-
tives with respect to Mgy at Ao = Ao are negative.
This implies that A§; < Ay and A, > Ao.

It is possible to show, in a way similar to the
proof of Proposition 3.1, that if the input sequence
Y1, Ya, ..., is distributed normal N(g,o?) and the
monotonicity assumptions of Proposition 3.1 hold,
then the optimal values pg, of of the reference pa-
rameters satisfy pug < p and of > 0.

4 CONCLUSIONS

In the above likelihood ratio method (importance
sampling scheme) choice of the reference value vg of
the parameter vector is very important. We showed
that for a large class of distribution families the prob-
lem of minimization of the variance of the likelithood
estimators is convex with respect to vy. We also
showed that in some cases there are order relations
between the parameters and their optimal reference
values. In those cases it is possible to give clear
recommendations how the reference values should be
chosen in relation to the considered values of the pa-
rameters.

Let us finally mention that the problem of mini-
mization of the variance of the likelithood ratio esti-
mators can be approached numerically by the like-
lihood ratio method. To do so consider for example
the function ¢(v,vg) in (9). For a fixed v its gradient
with respect to vg can be written in the form

Vz’o¢(1’.1’0) =
~Ev, {L(Z)*W(Z,v)*S"(Z,vo)},

provided the corresponding derivatives can be taken
inside the expected value. In order to find a mini-
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mizer v} of the function ¢(v, ) it is sufficient to solve
the associated system of equations Vy,¢(v,vg) = 0.
To estimate now v{ from simulation one can consider
the following stochastic equivalent (stochastic coun-
terpart) of Vy ¢(v,vo) = 0,

2 2 Vf(Zi,v0)
L(Z,))"W(Z;,v)"——=——— =0. (19)
2 L2 W(Z e s
Here Z,,Z,,...,1s asample from f(z,?), where v is a

chosen value of the parameter vector. The solution of
the system of equations (19) will provide an estimator
of vg.
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