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ABSTRACT

Many problems in machine learning and adaptive
control can be rephrased as the task of finding the
minimum of a function f(z) on the basis of noisy ob-

servations,
Y(z) = f(z) + e(z). 1)

Building on a tradition of works by H. Robbins,
L. Devroye, and others, we presume that f() may
be multi-modal and even discontinuous, and z may
be multivariate, and that the decision maker may se-
quentially choose design points z,, on the basis of the
history {(zj,y;),1 < j < n} of action/observation
pairs. The noise depends on this history only through
the choice of z,,.

Theory will be reviewed which assures that in var-
lous senses on-line convergence of f(z,) to the global
minimum of f() takes place. In application of the
methodology to hard optimization problems in black-
jack strategy, intervention for spatial epidemics, and
elsewhere, we have found solutions through simul-
taneous simulation and optimization that might be
very challenging to achieve by alternative techniques.
These developments are the rudiments of a theory
for “black-box” optimization, i.e., optimization which
does not require detailed analysis of the underlying
noisy environment. Some previous theory is surveyed,
and a new result especially suited to a simulation en-
vironment is offered.

1 BACKGROUND AND A LEARNING
ALGORITHM

1.1 A Motivational Problem

A common Al approach to certain deterministic
games and puzzles involves representing the game as
a graph, and at each “move”,

i. Expanding a partial subgraph from the current
vertex, as time allows,
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il. Heuristically assigning numerical values to the
leaves of the subgraph according to intuitive cri-
teria (such as, in chess, the extent to which ones
pieces are defended, the center of the board con-
trolled, etc.) , and

Backing up these values by dynamic program-
ming to find the best action from the current
vertex.

1il.

Several years ago, your author sought to bring op-
timization ideas to bear on this setting. Suppose a se-
quence of statistically similar puzzles are to be solved.
Then the opportunity exists to adjust the heuristic
function in (ii) according to observed relative per-
formance. Chess being so complicated, the simpler
challenge of sorting 8-puzzle problems was selected
for experimentation. The 8 puzzle (see Figure 1) is a
simplified version of a common children’s 15 puzzle.
One can only slide a numbered tile to fill the blank,
at each move. The object is to rearrange the tiles,
initially placed at random uniformly among solvable
puzzles, so that the numbers read in ascending order.

The vertex for the 8 puzzle graph is any repre-
sentation showing ordering of the tiles (including the
blank). Dr. E. Lugosi, choose as heuristic value func-

tion,
h(v;z) = dar(v) + 2 - de(v), )

where dps and d¢ are two distinct functions measur-
ing the distance of the current vertex v from the fully-
ordered vertex. The parameter £ > 0 is the relative
weight assigned to these two criteria, and the idea was
to find the weight z* that minimizes the average (i.e.,
expected) number of vertices expanded in reordering
a randomly-chosen arrangement,.

The author first attempted to do this by using
Kiefer-Wolfowitz stochastic approximation on adjust-
ment of r. He had expected that as more puz-
zles were solved, one would observe improved perfor-
mance. But such improvement did not materialize.
After endless fruitless verification of the program, it
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Figure 1: A Sub-graph for the 8 Puzzle

finally occurred to your slow-witted author that the
performance function must be a step function, as a
function of z, because there can be only a finite num-
ber of essentially different strategies, even though the
weight = is defined on a continuum. The gist of the
situation is that stochastic approximation is not ap-
plicable here! This saga motivated a more careful
inquiry into automatic learning algorithms and this
led to a satisfying attack on the 8 puzzle (Yakowitz
and Lugosi (1990)). The present study constitutes a
survey of our findings.

1.2 Automatic Learning for The Stochastic
Minimization Problem

Definition 1 Let f(z) denote a bounded real-valued
measurable funclion on an action set X C R%. The
stochastic minimization problem is the task of
sequentially choosing actions z,, on the basis of a
history of noisy observations

yi = y(z;) = f(zj) +e(zj),j <m, (3)

of the objective function f(z) in such a manner that
in some specified sense, as n | 0o,

f(xn) i fmin, (4)
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where frmin is the minimum (or Lebesgue-essential in-

fimum) of f(z).

In terms of the 8 puzzle, f(z) is the expected num-
ber of node expansions required to rearrange a con-
figuration randomly chosen from the set of solvable
initial orderings, when the heuristic function weight
in (2) is x. The noise e(z) embodies the randomness
of the initially-chosen board.

It is readily apparent that pointwise convergence
in (4) is not generally attainable under randomness,
even if the domain of actions is finite. We settle for
convergence in probability, but attempt to establish
rates. The only on-line learning strategies your au-
thor can conceive of are ones which partition the de-
cision times, 1.e., the entire set of positive integers,
into two subsets, designated sample times and resam-
ple times, respectively. During resample times, the
actions are chosen to be those yielding the lowest av-
erage observations, and at sample times, exploratory
actions are chosen, in hopes of happening upon bet-
ter values. The sample times become sparse, as the
learning process evolves, so that improvement of av-
erage performance to the optimal is possible. Below
we offer a generic learning algorithm, and the subse-
quent discussions will be aimed at stating properties
of this algorithm under various postulates.

1.3 Some Algorithm Components

i. p(x) is any probability density function having
as support all of a decision space X.

ii. {NP(n)} and {N(n)} are nondecreasing un-
bounded sequences of integers such that

N(1)=NP(1)=1,NP(0) = 0,P(n)N(n)/n | 0.
(5
Set n=1 and proceed to the iterative step.

1.4 The Iterative Step

New Sample Times (Steps 1 and 2)

If NP(n—1) < NP(n), select a new point from X

1. Choose a point, designated by t(NP(n)), from
X at random according to the pdf p(z). Set z, =
t(NP(n)) and observe y, = y(z,).

2. Start a running average myp(n) for observations
at t(NP(n)) by declaring

MNP(n) = Yn,
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and start a counter at t(NP(n)) by setting
NS(NP(n))= 1. ( Thus you see that “NP(n)” tells
the number of New [sample] Points that have been
gathered by time n, and “NS(j)” gives the Number
of Samples that have been taken at a given sample
point t(j),j < NP(n).) Sometimes the argument n
will be omitted.

Resample Times (Steps 3 and 4)

Else if NP(n — 1) = NP(n), resample at the ap-
parently best point.

3. Let I* be any index i, 1 < i < NP(n), such that
m; <mj, 1< j < NP(n). (6)

Set z, = t(I*), and observe y,.

4. Update the sample mean and sample counter.

Set

mre = [mpe - NS(I*) + yo]/(NS(I*) + 1), (7)

NS(I') = NS(I*) + 1. (8)

Assure at least N(n) observations at all points.

5. Skip this step if NP(n + 1) > NP(n). If, for
some j < NP(n), NS(j) < N(n), set n=n+1, set
z, = t(j), observe y,, and update m; according to

m; = [m; - NS(j) + yn]/(NS(G) +1)  (9)

and set NS(j)=NS(j)+1. Repeat this step as neces-
sary to assure that NS(j) > N(n),1 < j < NP(n).

6. Set n=n+1. Repeat the iterative step. (There is
no stopping condition.)

This algorithm serves as a foundation for a host
of methods, each appropriate for certain specific as-
sumptions or possessing some specific property of in-
terest. The remainder of this study gives an overview
of such developments and extensions.

2 THEOREMS FOR ON-LINE LEARNING

2.1 The Discontinuous Objective Function
Case

The primary intention of this section is to survey
some theoretical results regarding the stochastic min-
imization algorithm with respect to the objective (3).

Assumption 1 Assume there is a function P(d,n)
such that for m(z;n) the sample average of n inde-
pendent observations of Y(z), uniformly forz € X,

P[|m(z;n") — m(z)| > d, any n’ > n] < P(d, n).
(10)
Regarding the objective function, assume that f()
1s measurable on the borel set XC R4, and that finin
1s the essential infimum, with respect to the search
densily p(z) of the algorithm.

Theorem 1 Take Assumptiion 1 to be in force. Fur-
thermore, presume that all observations {Y (z(v;)};
with £(v;)'s identical, but v ’s distinct times, are mu-
tually 1.1.d.. Then if N(n)=o(n) and NP(n) is as in
the learning algorithm, for a control sequence chosen
by the algorithm, and for any d > 0, at resample times
n, for some positive number r < 1,

P[|f(zn)=fmin| > d] < O(FNPD 4N P(n)P(d, N((n))))
11

Corollary 1 If m > 2 and

sup Efle(z)|™] < o0 (12)

or for some positive constants C; and C,, and all
d>0,
P(d,n) < C; exp(—C>d?), (13)

then under (12), sequences NP and N can be chosen
so that

S Pllf(z0)~ fminl > d] = O(log(n) n!/™), (14)

1<v<n

and under (13), so that

Y Pllf(zy) = fminl > d] = O(log(n)?).  (15)

1<v<n

The theoremv and corollary are essentially those
found in §4 of Yakowitz and Lowe (1991). However,
here our condition (10) is stronger. It thereby allows
observations taken during resample times to be used
for updating the estimators m;.

From Wagner (1969), for example, it is known that
if (12) is satisfied, then P(d,n) in (10) may be taken
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as O(1/n™~1). Uniformly bounded random variables
satisfy (13), as do 0-expectation Gaussian variables.

The noise variables called “generalized Gaussian”
variables are those e(z) which satisfy,

Eexp(ue(z)) < exp(u?a), (16)

for some constant a and all . In §3, we show that
for variables satisfying (16) uniformly in x, one can
conclude that condition (13) is satisfied.

The rates of the corollary are attained with
NP(n) = O(log(n)) and N(n) = O(n'/™) for con-
dition (12) and NP(n) = N(n) = O(log(n)) for con-
dition (13). Since in both cases

O(NP(n)N(n)/n) — 0,

once may conclude that by randomizing the resample
times, one can achieve,

P[|f(zn) = fmin| > d] = g(n),
where g(n) is the rate of (14) or (15), according to
the appropriate condition.

The preceding developments and related material
are from Yakowitz and Lowe (1991). In the case that
there are but finitely many actions in X', a strategy
giving the provably optimal rate with respect to the
criterion, 3¢, ¢n PUf(22) = frmin| > d] is offered.
From examination of the derivations of the other rates
in the preceding reference, the reader will be able to
show that (14) and (15) are within a factor of at most
log(n) of being optimal.

2.2 Results for Smooth Objective Functions

The preceding developments did not require any
smoothness assertions regarding the objective func-
tion f(). If, however, f() is smooth, in some sense,
then one ought to anticipate faster convergence. In
fact, one can combine learning with stochastic ap-
proximation to achieve global convergence for multi-
modal functions without sacrifice of the fast rate en-
joyed by stochastic approximation.

2.2.1 A Learning Rule with Kiefer-Wolfowitz
Steps

The algorithm has the same basic structure as the one
given in §1.2, and here we indicate only modifications
to that rule needed for the Kiefer-Wolfowitz (KW)
step inclusion. The intention is that the operation
described in a step with a primed number replaces
the indicated step in the earlier algorithm.

Additional Algorithm Components
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iii. {a(:)} and {c(i)} are sequences such that for
some positive constants A and C, a(i) = A/i
and c(i) = C/i'/3.

Learning Alterations for KW Steps

2’. Additionally to the other parts of Step 2, de-
fine H(N P) to be the hypercube centered at t(NP)
having sides of length 1/N P)1/4,

3. SetY1l:=Y(zr-+¢), Y2 =Y(z- —c), and define
DY =1/2¢(Y1+Y2).
Here ¢ = ¢(NS(I*)), and I* is as in step 3. Then set
T=t(I") — a(NS(I")) DY.
Then redefine
(I =r

provided the 7 € H(I*). Otherwise, take T'(I*) to be
the point in H(I*) closest to 7.

4’. Use both values Y1 and Y2 when updating mj..

2.2.2 Results for the KW Learning Rule

Assumption 2 Assume that the objeclive function
f() is thrice continuously differentiable on X, which
1s now presumed open. Also, the set of global mini-
mizers 1s finile, and for froc the values of the objec-
tive function on the set of points which are local bul
not global minima of f, we have

froc > fmin-

Finally, f() is presumed locally strictly convez al ils
global minima, each such point being interior to X.

Theorem 2 Assume that Assumptions I and 2 hold,
and that the noise variables satisfy (12) for some m >
2, and depend on the past only through the choice of
z. Then al resample times n, and for some global
MINIMIZET Tpin, 4.S.,

Tn — Tmin. (17)

Furthermore,
nlla(zn - lmin) (18)
i1s asymptotically normal, with mean vector 0.
These results are derived in Yakowitz (1992). Note
that the proportion of epochs which are sampling

times converges to 0, so that by randomizing, one
can drop the restriction that n be a resample time.
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2.3 A Brief Listing of Related Developments

Yakowitz et al. (1992a) have supplied methodology
for the case that the noise is Markov dependent, a
situation relevant to queueing and network problems.
Pinelis and Yakowitz (1992) have studied the distri-
bution of f(z,) — fmin- In §3, we give some citations
to related works by others.

On the applications side, Yakowitz (1989) has ap-
plied these techniques to develop a self-improving Go-
Moku code, and Yakowitz and Kollier (1992) have re-
covered Thorp’s (1966) tens-count standing-number
table for blackjack by assigning a learning optimizer
to each entry and simulating an enormous number
of blackjack hands. Yakowitz et al. (1992b) apply
learning to an idealized epidemiology question which
was transcribed into a tough stochastic minimization
problem.

The author’s opinion is that these applications
are as satisfying as any similar experiments on ma-
chine learning or adaptive control reported in the
literature, with, of course, the exception of linear-
dynamics/quadratic-objective problems. The reader
should not accept such statements on faith, but duph-
cate the experiments in these citations and compare
with any alternative strategies that come to mind.

3 A THEOREM FOR OFF-LINE LEARN-
ING

In this section, we venture briefly into new territory,
as far was we know. In notation of earlier sections,
let

gmin(n) = rtrélrrll f(zy). (19)

In off-line learning we seek a strategy such that in
some sense,

Qmin(n) — fmin- (20)

The reader will quickly confirm that (20) is a far
weaker criterion than (3). In particular, if (3) holds,
then (20) is likewise satisfied. The condition (20),
which we here refer to as the off-line criterion, is
not suited to on-line learning because there is no as-
surance that z,, the action chosen at decision time
n, is tJ by which the minimum gmin(n) is achieved.
In practical terms, one has no reason to think that
under the off-line criterion, the average performance
improves with increasing n. Many results regarding
the stochastic minimization problem (e.g., Devroye
(1976, 1978), Gurin (1965), Matyas (1965), Yakowitz
and Fisher (1973) ) are intended only for off-line min-
imization. On the other hand, the criterion (20) is
appropriate for simulation analysis. The plan would

be to allot a decision horizon M to testing, perhaps
through simulation, and then selecting the action tj.
which seems best at the end of this learning period for
static on-line control. This plan brings us into at least
tangency with some traditional problems in statistics
and decision theory, as well as the literature for design
of clinical trials, etc. Authors who have studied off-
line learning in nonparametric settings have not, to
our knowledge, concerned themselves explicitly with
rates of convergence. However, under wide circum-
stances, conssistency has been established (e.g., the
Devroye references above), and if one pays sharp at-
tention to the proofs, the results reported here are
fairly evident.

The contribution of the present study which appar-
ently is new is that we take up the quest of prescrib-
ing a sequential design which is nearly optimal, in a
certain sense, and we make an explicit statement re-
garding a rate. This initial foray is limited in scope;
in particular, we assume a static strategy which does
not alter the sampling plan as data accumulates. We
continue to use notation from §1 associated with the
stochastic minimization problem. The algorithm we
prescribe here is as follows:

3.1 Off-Line Learning for The Stochastic
Minimization Problem

The off-line algorithm is presumed to coincide with
the “Automatic Learning” algorithm of §1, except
for the specific details below, where we intend that
the operation indicated by a primed number should
replace the corresponding step in the on-line rule:

3. If NP(n-1)=NP(n), then resample at t(NP — 1).

4’. Update the sample mean according to (7) and (8),
but with NP=NP(n) replacing I*.

5. Omit step 5.

6’. Let M be the designated number of observations
during the off-line learning phase. If n.=M, then stop.

Assumption 3 The value frnin = 0 s the p-infimum
of the objective function f(z) over X.

Assumption 4 The error variable e(z) tn (1) salis-
fies either condition (13) or (16) of §2.

We give here an off-line learning result which is in
the spirit of Theorem 2.



492

Theorem 3 Presume that the noise e(z) depends on
history only through the choice of . Under Assump-
tions 1, 8 and 4 and using the off-line learning algo-
rithm with N P(i) = Int(i/v/M), for

I* := Argmin{m;,i < VM},
we have that for some positive number v,

Plf(t(I")) > d] = O(VMexp(—7VM)).  (21)

Proof: Take e = d/2. Presume gmin = gmin(M) elc..
Then

Plf(t(I*)) > d] < Plgmin > €]
+  Plmaxicicnp [mi — f(¢(i))] > ¢

Let P1 and P2 denote the two probabilities at the
right of (3.1). Then let G(e) = P[f(t1) < €]. By the
assumption that fn,:n, the p()-essential minimum of
f(), 1s 0, we have G(e) > 0 and

P1 <(1-G(e)NF,
P2 < NP.-P[lm;— f(t(1))| > ¢]= NP - P3

Assume that S(n) is the sum of n independent ob-
servations of a generalized Gaussian RV with param-
eter & < 1. Then necessarily S(n) has expectation 0
and one may write that for u > 0,

PIIS(n)| > ne] = Plu(IS(n)| - ne) > 0]
< exp(~neu) Elexp(ulS(n)|)
< exp(—enu) - 8 exp(n u?)

where the term at the end is a consequence of
Azuma’s inequality (e.g., Stout (1974), p. 238) with
als = 1. Now take u = ¢/2, to get that

P[|m(n)| > €] < 8exp(—ne?/4). (22)

Recognize that by scaling the noise and the toler-
ance e by 1/\/a, with a as in (16), one can always
assure that if the 1.i.d. summands are generalized
Gaussian at all, one can satisfy that o < 1.

In view of (3.1) and (22) conclude that for some
constants ¢; and p in the open unit interval,

P1+P2=cNP 8NP .pVN.

If one sets
NP=N=VvM

then evidently
PIA(T(I")) > d) = O(VMp¥™).
End of Proof
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If one tries to improve this rate by increasing NP,
for example, the value NS ~ M /NP necessarily de-
creases, and this results in increase of P2, which is
a tight inequality. Similarly, decreasing P2 can only
come at the expense of increasing P1, The log() term
does allow some leeway, but within this factor, the
convergence rate cannot be improved.

This rate is quite an improvement over the prob-
ability of error, after M observations, in on-line
learning under (16), which from (15), must be
Op(log(M)/M). Your author had intuitively mistak-
enly thought that the on-line learning rate of Theo-
rem 1 was optimal, even in the off-line case.
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