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ABSTRACT

We investigate the dependence induced among mul-
tiple Markov chains when they are simulated in par-
allel using a shared Poisson stream of potential event
occurrences. One expects this dependence to facili-
tate comparisons among systems; our results support
this intuition. We give conditions on the transition
structure of the individual chains implying that the
coupled process is an associated Markov chain. Asso-
ciation implies that variance is reduced in comparing
increasing functions of the chains, relative to indepen-
dent simulations, through a routine argument. We
also give an apparently new application of association
to the problem of selecting the better of two systems
from limited data. Under conditions, the probability
of incorrect selection is asymptotically smaller when
the systems compared are associated than when they
are independent. This suggests a further advantage
to linking multiple systems through parallel simula-
tion.

1 INTRODUCTION

Most work on parallel simulation stresses efficiency in
evaluating the performance of a single system. The
implications of parallelism for the comparison of sev-
eral systems have received less attention (exceptions
include Heidelberger and Nicol 1991, Ho, Sreenivas,
and Vakili 1992, and Vakili 1992). When multiple sys-
tems are simulated together, in parallel, their outputs
often become dependent, and this dependence must
be considered in the statistical evaluation of compar-
isons.

Our purpose here is to examine the dependence in-
troduced among multiple Markov chains when they
are coupled through parallel simulation. One expects
this dependence to facilitate comparisons; we give
conditions that validate this intuition. Our model
of parallelism is rather simple: we assume that each
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chain is uniformizable and that the various chains
share a single Poisson stream of potential event times;
this is the method of Vakili (1992). It seems reason-
able to expect our results to extend, at least qualita-
tively, to other implementations based on uniformiza-
tion, such as those described in Heidelberger and
Nicol (1991).

Our results are based on conditions ensuring that
the coupled process obtained by simulating multi-
ple chains in parallel is an associated Markov chain.
Association is a strong form of positive dependence,
implying that all increasing functions of the various
chains are positively correlated. Our use of associ-
ation in this setting is similar to that in the analy-
sis of common random numbers of Heidelberger and
Iglehart (1979) and Glasserman and Yao (1992), but
the conditions used here are quite different from the
ones in those papers. A key difference is that we
establish association by directly examining the tran-
sition structure of the coupled chain, rather than by
attempting to show that the coupled process is an in-
creasing function of 1.1.d. random variables. A princi-
pal contribution of this paper is to identify conditions
on the individual chains ensuring that the coupled
chain is associated.

It is easy to show that a class of comparisons are
statistically more efficient when the different chains
are associated than when they are independent. This
is one sense in which the coupling induced by par-
allel simulation is advantageous. We outline another
sense. Suppose the goal is to select the system with
the best performance. Under reasonable assump-
tions, the probability of failing to select the best
system from finite simulation runs vanishes exponen-
tially as the number of runs grows. For pairwise com-
parisons, we argue that when the systems compared
are associated, the exponential rate is at least as great
as when they are independent.

Section 2 formalizes our model of parallel simula-
tion. Section 3 reviews association and its connection
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with monotone Markov chains. Section 4 puts condi-
tions on the transition structure of individual chains
ensuring that the coupled chain is associated. Section
5 looks at the implications of association for correctly
selecting the better of two systems.

2 MARKOV CHAINS SIMULATED IN
PARALLEL

In this section, we describe a mechanism for simulat-
ing M Markov chains in parallel. The basic idea is
to use a single shared clock that drives all chains si-
multaneously. The justification for this construction
of chains is the well-known uniformization procedure.
We begin with a brief review of this procedure.

2.1 Uniformization ’
Let X = {X;,t > 0} be a continuous-time Markov
chain (CTMC) on a (finite or) countable set S. De-
note by Q;; the rate of transitions from state s; to
state s;, and let ¢; = —Qj; be the total rate of tran-
sitions out of s;. We assume that Q is bounded (i.e.,
uniformizable), meaning that sup ¢; < oco. Given that
the chain is in some state, say s;, it remains in that
state for a duration that is exponentially distributed
with mean qi’l. These sojourn times of the chain in
states can be untiformized by appropriately introduc-
ing extra fictitious transitions from states to them-
selves. The inter-event times can thus be made an
i1.d. sequence of exponential random variables inde-
pendent of the states of the chain.

More precisely, let X = {X;,t > 0} be a CTMC
with infinitesimal generator @ bounded by A. Let
NA = {N,;,t > 0} be a Poisson process with rate
A and Y = {Y,,n > 0} a discrete-time Markov
chain (DTMC) with transition probability matrix
P = I+ A-'Q (where I is the identity), with N and
Y mutually independent. If X, has the distribution
of Yy, then {X;,t > 0} and {Yn,,t > 0} are equal in
law. The Poisson process N determines the (poten-
tial) state transition epochs of the CTMC X, while
the state transitions are determined by the DTMC
Y. Multiple Markov chains simulated in parallel can
use the same dominating Poisson process.

2.2 Simulating One Markov Chain

Before discussing simulation of multiple Markov
chains, we describe a specific implementation of uni-
formization available for many physically meaning-
ful models. Our central assumption is that all state
transitions can be classified into finitely many types
of events, with the current state and the event type

completely determining the next state. (So far, the
only restriction this imposes is that there be an upper
bound on the number of transitions out of any state.
Later, we put more detailed conditions on the tran-
sitions.) This additional structure is often present in
simulated systems, but is suppressed by the matrix

As before, let S denote the state space. Let E =
{e!,...,eK} be the set of events, with K finite. To
each event e there corresponds a deterministic state
transition function

fe:S—S.

Notice that f, is defined on all of S. If event e is not
active in state s, then f.(s) = s, corresponding to a
null transition.

For each event ¢, let \; be the maximum possible
rate of event e and N** a Poisson process with rate
), dominating the instances of e’. These Poisson pro-
cesses are assumed to be independent. The superpo-
sition of these processes is a Poisson process N with
rate A = Ef(:l A;, and the original processes can be
recovered by thinning N (with probability A;/A to
recover N*'). This leads to the following model of
the simulation clock.

Let (1,¢) = {(n,€n),n > 0} be a marked Pois-
son process, where {r,,n > 0} is the sequence of
arrival instances of N4, and {en,n > 0} is an iid.
sequence of discrete random variables, independent
of the Poisson process N2, such that ¢, € F and
P(en = €') = X\;/A. A is the rate at which the clock
ticks, 7, is the n-th tick of the clock, and ¢, is the
type of event that occurs at the n-th tick of the clock.

Given initial state Yo = X, the state of the system
evolves as follows:

Yn :ftnoffn-l 0"'Of€1(‘\’0)
and
o0
X = ZY,,I{Tn <t< Thyr1}, fort >0

n=0

2.3 Simulating Multiple Markov Chains

We now use this mechanism to simulate M Markov
chains simultaneously. Let

S7 = the state space of system j;
E? = E = event set of system j;
fI = state transition rule for event e in system J

By possibly enlarging some event sets, we can always
assume (as above) that all M systems have the same
event sets.
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Define F, : I-Htl S — Hf{ S7 componentwise:

F(z',...,2™) = (f2(z'), ... f1 (=™))

Given Xy = (X3,...,X¥), define X = {X,,t > 0}
on S CIIM s by
Yo,=F,, oF

En—

L o...0F. (Xo),

and

o0
X = EY,.I{T,, <t < Tp4a}, fort >0,

n=0

This construction defines a coupling of the M chains
with each component process X/ having the correct
marginal probability law. In general, the state space
S of {X¢,t > 0} is a strict subset of [V S7.

A note on implementation is in order. The above
construction can be easily implemented in a variety of
computational environments. In this model of simu-
lation, at each tick of the clock, the present time (i.e.,
7) and the type of the event (i.e., €,) are announced
to all systems. In a serial implementation on a sin-
gle processor, F(z!,...,zM) is implemented sequen-
tially in a loop that executes fi(z/) forj =1,..., M.
In a parallel implementation, F(z!,...,zM) is im-
plemented in a distributed fashion where each fJ(z/)
(or possibly a group of them) is executed at a sep-
arate processor simultaneously and in parallel. In a
SIMD (single-instruction, multiple-data) implemen-
tation, the clock is implemented at the front-end com-
puter and each fJ(z7) is executed at a processor of
the SIMD machine. At each tick of the clock, the
time and type of event are broadcast to all proces-
sors. The processors then execute their respective
fi(z7) in a SIMD fashion. For further discussion on
the computational aspects of this approach see Vakili
(1992).

We now turn our attention to another potential
advantage of this approach and to the main question
we address in this paper. Since the M chains are
simulated simultaneously and in parallel, it is possi-
ble to compare their performance simultaneously and
in parallel. Does coupling the chains facilitate their
comparison, compared to, say, simulating them inde-
pendently?

Let L' be a sample statistic from a finite-horizon
simulation of system i¢. Then

Var[L} — L7] = Var[L!] 4+ Var[L?] — 2Cov[L*, L’]. (1)

To the extent that the coupling introduces positive
covariance among the sample statistics, it reduces
variance in (pairwise) comparisons, relative to inde-
pendent simulations.

Equation (1) motivates an examination of when
(and in what sense) Markov chains simulated with
a shared clock are positively dependent. In particu-
lar, we develop conditions for these chains to exhibit
associalion, a strong type of positive dependence. As-
sociation implies variance reduction in the setting of
(1) and related comparisons. In Section 5, we outline
another dividend of association.

3 ASSOCIATION AND
CHAINS

MARKOV

We now review some basic properties of association
and conditions for a Markov chain to be associated.
Association was introduced in Esary et al. (1967) as
a property of sets of (real-valued) random variables:
they defined the random variables { X1, ..., X} to be
associated if all increasing functions of these variables
are positively correlated; ie., if

COV[f()&’l 3oy ‘Yn)) g(‘\'h ey Xn)] 2 0

for all increasing f and g for which the covariance
exists. Esary et al. summarize simple properties of
associated random variables. Among these are the
following: subsets of associated random variables are
associated; independent random variables are associ-
ated; increasing functions of associated random vari-
ables are associated; and a set consisting of a single
random variable is associated. Association has proved
to be a useful condition in many settings, including
reliability, interacting particle systems, and the anal-
ysis of variance reduction techniques.

The utility of association is enhanced through a
connection with a class of Markov chains. Daley
(1968) defined a Markov chain on R to be monotone
if its transition kernel P satisfies

z <y= P(z,[z,00)) < P(y,[2,00)), Yz € R. (2)

He noted that a monotone Markov chain {X,,n > 0}
is an associated sequence, in the sense that all fi-
nite subsets of {X,,n > 0} are associated. The
condition in (2) could alternatively be written as
P(Xl 2 Zl,\’o = I) S P(,YI Z ZIXO = y) when-
ever £ < y. An equivalent characterization is that
E[f(X1)|Xo = z] is an increasing function of z for
all bounded, increasing functions f. In some ways
the most natural characterization is this: a Markov
chain on R is monotone if for any pair z,y € R with
z < y it is possible to construct two copies of the
chain, {XZ,n > 0} and {X¥,n > 0} with XZ =z
and X§ = y, such that X7 < XY for all n. Just
such a construction, starting from an i.i.d. sequence
of uniform random variables, is carried out in Heidel-
berger and Iglehart (1979) as part of their analysis
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of common random numbers. Since this construction
transforms independent random variables monotoni-
cally to {X,,n > 0} it actually proves that a mono-
tone Markov chain is an associated sequence.

Analogous properties and definitions apply in con-
tinuous time. A Markov process {.\;,¢ > 0} on R is
monotone if for all 0 < ¢; < t» the transition kernel
Py, given by Py q,(z, A) = P(X, € A|X, = z) is
monotone in the sense of (2). This condition admits
a sample-path interpretation just like the one given
above for discrete-time chains. Any finite subset of
a monotone Markov process is associated, so in this
sense monotone Markov processes are associated pro-
cesses. For Markov processes on finite sets, Keilson
and Kester (1977) give conditions on the infinitesimal
generator for monotonicity.

If we simulate M Markov processes {X},¢t > 0},
i=1,..., M, in parallel, the resulting coupled pro-
cess {(X},...,XM),t > 0} will often be a Markov
process as well. In particular, this holds using the
set-up of Section 2.3. Even if each X* is a scalar pro-
cess, the coupled process is vector-valued; so, we need
conditions for association in higher dimensions.

We restrict attention to subsets of R¢ though most
properties we discuss apply to more general partially
ordered sets. We assume R? is endowed with a partial
order <, which need not be the usual componentwise
order, though it often will be. A set A is called an
upper set (with respect to <) if z € Aandz <y
together imply y € A; thus, an upper set cannot
be exited through upward movement. A probability
measure p on R4 is called associated if

p(Ar N Az) > p(Ar)p(Az2) (3)

for all upper sets Ay, A» (Lindqvist 1988). This says
that indicator functions for upper sets are positively
correlated under g. An equivalent characterization is
that all bounded, increasing functions are positively
correlated under p. A random vector on R? is called
associated if its distribution is associated. Perhaps
the most important distinction between association
on R and association on R4, d > 2, is that in higher
dimensions the set consisting of a single random el-
ement may not be associated, as it is in R. To put
it more generally, on totally ordered state spaces all
probability measures are associated, but not so on
partially ordered spaces.

Condition (2) has a natural generalization to R4
A transition kernel P and the corresponding chain
{Xn,n > 0} are called monotone if

z<y= P(z,A) < P(y,A), for all upper sets A.

It is still true that E[f(X1)|-Xo = z] increases in z for
allincreasing f, and the sample-path characterization

remains valid as well. However, on a partially ordered
set a monotone Markov chain may not be associated
— a stronger condition is needed. If P is monotone
and if, in addition, every probability measure P(z, ),
r € R4 is associated in the sense of (3), then the chain
is associated as well as monotone. This is proved in
Lindqvist (1988).

As before, conditions for continuous-time processes
can be reduced to discrete time by considering tran-
sition operators from one fixed time to another. For
our purposes, it is more convenient to restrict atten-
tion to countable partially ordered sets and work with
conditions on the infinitesimal generator. We only
consider bounded generators; i.e., those that are uni-
formizable. Following Massey (1987), we say that a
generator @ is monotone if, for all upper sets A con-
taining either both z and y or neither,

z<y=Q(z,4) <Q(y,4). (4)

Monotone generators indeed generate monotone
Markov processes. A generator is called up-down if it
permits transitions only between comparable states;
i.e., if Q(z,y) > 0 implies that either z < yory <z.
The key result linking monotone Markov processes on
countable sets and association is this:

Lemma 3.1. A Markov process {X;,t > 0} on a
countable partially ordered set S with bounded gen-
erator is associated for all associated initial distri-
butions if and only if its generator is monotone and
up-down.

The original version of this result, requiring a finite
state space, was given in Harris (1977); a far more
general result, not even requiring a countable state
space, appears in Liggett (1985, p.80).

4 ASSOCIATION OF PARALLEL
MARKOV CHAINS
Let X!,..., XM be M Markov chains as in Section

2, X’ having countable state space S7. Each 57 is as-
sumed to be partially ordered. To avoid cumbersome
notation, we use < to denote the partial order on all
state spaces. These partial orders are not necessarily
identical (nor are the $i’s). Let X = (X!,...,XM)
be the coupled process on S C ]_I]M=1 S7 as defined in
Section 2. We assume that the partial order on S is
the componentwise order which we also denote by <.
We derive our result on the association of the cou-
pled chain by focusing on the transition kernels. We
begin with the following lemma that establishes a use-
ful relation between properties of the generator of a
continuous-time chain and the transition kernel of the
corresponding uniformized discrete-time chain:
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Lemma 4.1. Assume that a generator ) and a tran-
sition kernel P are related via P = I + A~1Q, I the
1dentity matrix. Then

(1) If P is up-down, @ is up-down.

(i1) If P is monotone, @ is monotone.

Proof. From Q(z,y) > 0 it follows that z # y. Note
that for z # y, P(z,y) = AQ(z,y) and Q(z,y) > 0
implies P(z,y) > 0. Since P is up-down, P(z,y) >0
yields £ > y or £ < y. Therefore Q(z,y) > 0 yields
z > yor z <y and hence Q is up-down. This proves
(1).

Assume that z < y, and A is an upper set that
excludes both z and y. Then

P(z,A) = EP(:: z) =

ZEA
doI(z, )+ ¢ ZQ(z 2) = —Q(z.A)-
zZEA zEA
Similarly
P(y.4) = Q. 4)

hence, if P i1s monotone,
P(z,A) < P(y,4) = Q(z,A) < Q(y, A)

If A includes both z and y then

(z,4)= Y _ P(z,7)

zZEA
; £2)+ 5 ;Q =14 1Q(,A).
Similarly
P(y,A) = 1+ £Q(3, 4)
therefore

P(z,A) < P(y,A) = Q(z,4) < Q(y, 4)

hence Q is a monotone generator and (ii) is proved.
]

Consider a single Markov chain defined via the rep-
resentation in Section 2. Define f. to be up-down if
fe(z)<zor fe(z)>zforallz €S,

Lemma 4.2. If f. is increasing and up-down for all
e € F, then the transition kernel P for the discrete-
time process {Yn,n > 0} is up-down and monotone.

Proof. For z,z € S define P.(z,z) by

1 if fo(z) =
reo={ 4 i3

and let p; = P(e, = ¢'). Then the transition kernel
P is determined via

K
z) = Ep,-Pe (z,2
i=1

Thus if P(z,z) > 0 then P.(z,z) > 0 for some e € £}
hence z = f.(z) for some e € E and since f. is up-
down z < z or z > z. Therefore, P is up-down.

Now assume z < y; then by hypothesis f.(z) <
fe(y) for all e € E. For any upper set A, f.(z) € A
implies that f.(y) € A by the definition of upper sets.
Note that P.(z,A) = 1if f.(z) € A and P.(z,A) =0
if fo(z) ¢ A. Hence, the conclusion in the previous
sentence can be re-written as: P.(z, A) = 1 implies
P.(y, A) = 1. Therefore, we have

z<y= P.(z,A) < P.(y,A), foranye€FE.

Note that P(z, A) = Z 1PiPe.(z, A). Hence, if z <

Y

K
P(z,A) = Zp,-Pe.(:c,A)
i=1

K
Zpipe'(y’A
i=1

Therefore, P is a monotone kernel. O

IN

Combining Lemmas 4.1 and 4.2 we obtain the fol-
lowing result:

Theorem 4.3. If f, is increasing and up-down for all
e € E, then the generator @ of the continuous-time
process X = {X:,¢t > 0} is up-down and monotone,
hence the process X is associated for all associated
initial distributions.

Now we turn to the construction of M chains
in parallel. To ensure that the coupled process
X = (X1,...XM)is associated we make F, up-down
and increasing. Keeping in mind that S is typi-
cally a strict subset of Hl 57, let us say that fI,
j=1,..., M are up-down in the same direction on S
if for all z=(z!,...,zM) € S, either

fg(xj)z-"?j, j=1)"')M)

or ) . 4
fl(zd) <, j=1,...,M.

The following theorem is the main result of this sec-
tion:

Theorem 4.4. If fI are increasing functions for all
e € Fand 1 < j < M, and if for each e € E,
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the functions fJ, j = 1..., M, are up-down in the
same direction on S, then the coupled process X =
(X1, ..., XM) is associated for all associated initial
distributions.

Proof. Since the partial order on S is the component-
wise order, it is trivial to verify that fJ increasing for
1 < j < M implies that F, is increasing. Also if fIs
are “up” (“down”) for 1 < j < M then F, is “up”
(“down”). Hence by Lemma 4.2 X is associated. O

We now point out an easy consequence of asso-
ciation. Fix a (deterministic) time-horizon T > 0.
Suppose L' is an increasing real-valued function of
{X}{,0 <t < T}, interpreted as a cost or performance
measure for system i. Then association of {X;,t > 0}
implies that L and L’ are positively correlated, for
all 7 and j. Via (1), we get

Corollary 4.5. If L', i = 1,..., M is an increasing
function of {X},0 < ¢t < T}, then under the condi-
tions of Theorem 4.4, Var[L* — L] < Var[L]+Var[L7].
Thus, coupling the chains reduces variance compared
to independent simulation.

Under appropriate additional conditions, it is pos-
sible to extend Corollary 4.5 to steady-state estimates
and to multiple comparisons.

5 PROBABILITY OF CORRECT SELEC-
TION

The previous section showed that parallel simula-
tion of Markov processes resulting in an associated
coupled process reduces variance in making compar-
isons. We now consider a different setting and es-
tablish another consequence of association. Suppose
that from the processes we simulate in parallel we
wish to choose the one with best performance; e.g.,
the one maximizing some expectation. With finite
simulation runs, there is typically some probability
that the process with the best sample performance is
not the one with the best expected performance. In
this case, picking the best observed system may result
in an incorrect selection. We show for pairwise com-
parisons that if the systems compared are associated,
then the probability of incorrect selection is asymp-
totically smaller than if the simulations are carried
out independently.

To develop this idea in more detail, we restrict
attention to the case of two discrete-time processes
X ={Xn,n >0} and Y = {Y,,n > 0}. We allow
X and Y to be dependent and denote by ¥ and Y a
pair of independent copies of X and Y. Suppose that

n
lim n~! Ef(xi) = px
=1

and

n

lim 0™ty D A(Y:) = py
i=1

exist almost surely and are constants. Suppose that
px > py and that this makes system X preferable
to system Y. After simulating the two systems for
a finite time, we pick whichever has the greatest ob-
served performance. The events

Go={n"1)_ f(Xi)—n1 ) f(¥i) < 0}
i=1 i=1
and
G ={n"2)_ (X)) —n"2) f(¥i) < 0}
=1 i=1

are the events of incorrect selection using, respec-
tively, coupled and independent simulations. Vari-
ous decision rules have been proposed and extensively
analyzed in the simulation literature, some with the
explicit goal of maximizing the probability of correct
selection; for a recent survey, see Goldsman et al.
(1991). A different perspective on related issues is
given in Ho et al. (1992).

Ideally, we would like conditions on the dependence
of X and Y under which P(G,) < P(G,). Intuitively,
positive dependence between the two processes would
seem to support this inequality, but association by it-
self does not appear to imply it, in general. However,
both P(G,) and P(G,) vanish as n increases; in fact,
under mild conditions both go to zero exponentially
fast. We argue that, with association, the exponential
rate for P(G,) is at least as great as that for P(Gy).

We consider only the case of an i.i.d. sequence
{(Xn,Yn),n > 0}; at the end of this section we com-
ment on the Markov case. Define the moment gener-
ating functions

My (8) = E[eﬂf(Xo)], My (6) = E[eﬂf(Yo)]’

M(8) = E[¢°U(Xo)-(vo))],

and
M(0) = E[e"U Kol (7o) = My () My (—0).

We assume that Mx and My are finite for every
in a neighborhood of the origin. This implies that
M and M are also finite in some neighborhood of
the origin. Association enters through the following
simple observation:

Lemma 5.1. If (X,, Yp) is an associated vector and
if f is an increasing function, then M (6) < M(9).
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Proof. For all # € R, one of the two functions
z — exp(fz) and z — exp(—0z) is increasing and
the other is decreasing. If (Xo,Y)) is associated and
f is increasing, then f(Xo) and f(Yy) are associated.
But then exp(6f(Xo)) and exp(—0f(Yy)) are nega-
tively correlated; i.e.,

E[e’U(Xo)=1(Yo)l] _ E[e84 (X0)|E[¢=8/0%0)]] < o,

as claimed. O

Define events F, an_d F, by replacing the strict
inequalities in G, and G,, with weak inequalities. We
now have

Theorem 5.2. There exist non-negative constants ¢
and ¢ such that the following hold:

limsupn~llog P(F,) < —c
n—oo

liminfn=tlog P(G,) > -—c
limsupn~'log P(F,) < —¢
liminfn=!log P(G,) > -—¢

n-— o0
The constants satisfy ¢ < c.
Proof. Define

I(z) = st;p{@:z —log M(6)},

and define [ from M in the same way. It follows from
Chernoff (1952, Theorem 1) that the inequalities in
the statement of the theorem hold with

°= 1 ()= 1)

and ) )

¢= ;E%I(z) = I]rslt;l(z).
So, it suffices to show that I(z) > I(z) for all z. But
this follows from the fact that M(6) < M(8) for all
6.0

The limits in the theorem essentially state that,
using associated samples,

P(error) ~ e™"¢,

and using independent samples

P(error) ~ e~"¢
Since ¢ > &, the probability of incorrect selection is
asymptotically smaller with association.

There are extensions of Chernoff’s theorem for
sequences more general than iid., including the
Markov case. Verification of the conditions needed
to generalize Theorem 5.2 is the subject of current
investigation.

6 SUMMARY

We have investigated the dependence induced among
multiple Markov chains simulated in parallel using a
shared stream of potential event times. Conditions
on the transition structure of the individual chains
guarantee that the coupled process is associated. As-
sociation leads to variance reduction in comparing the
performance of the various systems. It also suggests
that the probability of failing to select the best system
is asymptotically smaller (as the sample size grows)
when the chains are coupled than when they are sim-
ulated independently.
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