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ABSTRACT

Ordinal Optimization (Ho, Sreenivas, and Vakili 1992)
used in discrete event simulation promises to be an
efficient tool for narrowing the search for optimum. The
thecory so far, however, is based on independent
estimation error for parametrically different experiments.
This paper experimentally verifies the intuitive belief
that correlations in estimation error can only help but
not hinder the search process. Some analytical results are
also presented to support the results. The results support
the notion of synergy between ordinal optimization and
parallel simulation on a SIMD machine.

1. INTRODUCTION AND RATIONALE

In a separate paper (Ho, Sreenivas, and Vakili 1992), we
documented the advantages of doing ordinal rather than
cardinal optimization. In other words, if we are primarily
interested in comparing the relative order of the
performance of the various designs vs. the actual
magnitude of the performance of the designs, then
considerable computational savings can be expected.
Principally, we demonstrated both theoretically and
experimentally that performance order are largely
immune to corrupting noise. This means that we can
evaluate system performance very approximately and
still have confidence that ordinal comparisons based on
such approximate estimate of performance are valid. For
example, suppose we randomly pick out 12 designs out
of 200 in the space of design parametcrs. We can lay
even bets that at least one of the 12 designs will remain
in the top 6% performance population even if we
randomly evaluate another 188 designs. (This correspond
to the case of estimating and ordering 200 designs where
the estimation errors are infinite. For a general solution
to this problem see Appendix of Ho, Srcenivas, and
Vakili (1992). The seemingly counter-intuitive result is
similar in nature to the probability result of birthday
matching in a room of 25 person).

One of the assumptions of both the analytical and
experimental results of ordinal optimization reported in
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Ho, Sreenivas, and Vakili (1992) is that the performance
estimation errors are i.i.d. In applications such as
performance estimation for DEDS via simulation, this
assumption of independent estimation error from one
design to next may not hold due to the use of common
random variables, replications with identical initial
conditions, and parallel simulation (Vakili,
Mollamustafaoglu, and Ho 1992), etc. Question then
naturally arises as to the validity of the noise immunity
property of ordinal optimization in such cases.
Intuitively, we expect that correlation among the
estimation errors seldom can hurt and actually helps
most of the time. In the extreme case of posilive
correlation, i.e. all estimation errors are the same. It is
clear, the observed (estimated) order of performance will
coincide with the actual order. Similarly, in the case of
extreme negative correlation between adjacent
performances, by which we mean that only half of the
estimation errors are positively correlated, then the effect
at worst is to remove half of the performance samples
from consideration and the remaining half will be
positively correlated which again helps. The purpose of
this short paper is to confirm theoretically and
experimentally the above conclusion and the intuitive
justification above.

2. OUR MODEL

We consider pcrformance measure J(0), say of a discrete
event dynamic system, where 8 = {6;,---, Oy) € ©1s
the design parameter(s) of interest. We are interested in
the following optimization problem:
Minge e J(0)

For notational simplicity, we shall use J, to denote J(6,)
(n=1,--- N). Let us also assume without loss of
gencrality that the N designs, {6, - - -, Oy), are ordered
(renumbered if necessary) such that J; is the best design,
J, the next best, . . ., Jy the worst. Of course, this is
not known to the designer. His job is to determine the
best design by observing the noisy versions of J;. Let
Jn) be the nth observed performance of J. Thus, Ji is
an estimate of J, and w, the estimation error, i.c.,
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J=Ta+wn. Our previous work assumes that the w,'s
are u.i.i.d. A reasonable model of correlated w, can be

constructed from well known linear system theory. In
particular, we consider the following model

Wi Vi
=ALC ()
WN VN

where A is an NxN matrix and vy, - - -, vy are i.i.d. zero
mean normal random variables. This model is general
enough for most problems of practical interest.
However, it does assume zero mean for the w,'s (We
already pointed out that a constant mean does not matter
in ordinal optimization. But the model of (1) does not
account for perverse non-constant mean such as the
largest positive mean at the best design and
monotonically decreasing to the reverse at the worst
design). The normal distribution assumption can be
easily justified based on the central limit theorem for
most cases. Also this is the only reasonable model
which satisfies the stationary condition that the marginal
distribution of each w is the same. In Appendix B, we
numerically investigate the covariance matrix A for
some simple queueing systems. As we discover, matrix
A often has some nice and simple properties.

As discussed in Ho, Sreenivas, and Vakili (1992), the
types of ordered performance curves, (i.e., a plot of the
performance of various designs ordered according to
magnitude. Thus, the curve must be monotonically
increasing if we number the best design as #1, the next
best as #2, . . . etc.) particularly for behaviors near the
global optimum are limited to three: steep, flat and
linear. To this end we suggest a generic set of such
ordered performance curves parameterized by k according
to Equation (2)

I_k_c;_n n < (1-kN
_ J(1-kN )
l (l-k)Cn + (2k-1)C n 2 (1-kN
kN k

which is illustrated in Fig.1
3. EXPERIMENTAL STUDY

Given the estimation error model and the generic set of
performance curve in section 2, we are in a position to
do a comprehensive set of experiments and to answer the
question

What is the effect of correlation in
performance estimation errors on
the noise immunity property of
ordinal optimization? Q1)

Ordered performance J

Experiments number n

Fig.1 A Generic Set of Ordered Performance Curves

We first consider a simple case in which we assume w;
= v, and w,,; = aw, + bv,, (n=1, .. N-1), where
Vi, -+ vy are ii.d. normal random variables
N(0,10000/12) (Here we assume the noise is relatively
large compare to the largest performance value 200. In
Ho, Sreenivas, and Vakili (1992), they use U(0, 100) as
their noise model which has mean 50 and variance
10000/12. So we choose the same variance to get the
experiment results.) and a and b are two constants such
that a2+b2=1 (this condition insure that the variance of
any w is equal to the variance of v which is 10000/12).
We know that in this model the noise is exponentially
distributed. Matrix A in (1) is then given by

1 0 o ... 0

a b o ... 0

A=l a2 ab b ... 0
aN—l aN——2b aN—3b . b

We can easily verify that the correlation of estimation
errors is increasing with respect to 'a’ and geometrically
decreasing from one evaluation to the next. In the
experiments, we vary

k=0.1,0.2,0.3,04,0.5,06,0.7, 0.8, 0.9.

a=0,20.1, 0.2, 0.3, £0.4, £0.5, 0.6, +0.7,
0.8, £0.9, £0.91, £0.92, £0.93, +0.94, +0.95,
10.96, £0.97, £0.98, £0.99, £1.

and set N = 200, C = 200. The number of replications
of the experiment for each combination of “a” and “k” is
1100.
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We answer a specific version of (Q1)

What is the average number of
observed top-ten designs remaining
as true top-ten, i.e. the alignment
between observed and actual
performance order? (Q1S)

We summarize our experimental results in Fig.2.
It can be observed from the figure that

* When the correlated factor “lal” increases from 0 to 1,
the average number of good designs, m, does not
decrease. When 0<a<0.9, m is almost unchanged. When
a>0.9, m increases quickly as to be expected. So we can
say the correlation definitely does not make our results
worse.

« In the extreme case of positive correlation, i.e. w, = w.
)

for i,j, the observed order of performance will coincide
with the actual order. In the extreme case of negative

correlation between adjacent performances, i.e. Wi, =

W, the number m is always more than 5 but less than
10. This confirms the intuition that the effect at worst is
to remove half of the performance samples from
consideration. This effect is also seen in the figure.

- When “k” increases, i.e. the curve becomes steeper, the
number of good designs also increases, i.e. the
alignment approaches one. But it is a nonlinear increase.
So the steeper the performance curve is, the better the
result is.

Generally, for an arbitrary system the noise model may
not be exponentially distributed or stationary, (there are
some examples in appendix B.) i.e. a and b may not be
constants. So we did some experiments for a more
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Figure 2. Experimental Results for Normal Noise
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complicated system in which w; = v; and wy,; =
Cane1Wq + boy1Vans1- Again similar the previous case v,
... vy are i.i.d. normal random variables
N(0,10000/12). c is a scalar constant in [0, 1]. a,'s and
b,'s are arbitrary non-negative constants in [0, 1]. a,'s
represent the relative ratios of the correlations while ¢
represents the scale of the correlations. ¢, a,'s and b,'s
satisfy (ca,)2+(b,)2=1. Matrix A in (1) is given by

1 0 c
a|c b] CER] 0
A= xac? axch; e 0
N-1 N-1
H aicN_1 H a;cN_zbl . br-1
i=1 i=2

Clearly, the previous case is a special case of this one in
which a, = 1 for all n and ¢ = a. Here we vary ¢ and it
can be easily to verify that the correlation is increasing
with respect to c. The experimental results we obtained
are similar to those of the previous case.

Before closing this section, we mention that we also
tested the case in which vy, - - -, vy are i.i.d. uniform
random variables (we want to emphasize that in this case
w,'s do not have the same type of distribution). Our
results for this case have been included in Appendix A,
in which we can see that the very similar, though
slightly different, conclusions to those we observed for
the normal distribution case can be drawn.

4. THEORETICAL ANALYSIS

In the previous section, we show experimentally how
correlated noise can affect ordinal optimization. In this
section, we will provide some theoretical analysis to

back up some of our claims and observations we made
based on experimental results.

We first consider the case N=2. If (w;,w,) is normally
distributed with mean and covariance matrix

G = @)
0 G012 O22
respectively, then it is not difficult for us to calculate

1 X2
Exp(-5——- 5= ydx
V21(6,,+02,-2012) J 2(011+022-2012)

—00

d/'\/ 011+022—20'12
_1 J Exp(- ) dx
vor T2
where d = J, - J; 2 0. Itis clear Prob(Jj;) <Jj) is an
increasing function with respect to 6;,. This means that
the larger G, is, the more likely we will pick up the
right design — number one.

We now consider the case N=3. In this case, we
examine the effect of 633 on Prob(Jj;; < Jy), Iy <

J(3)), which is the probability that the only design we

pick up based on our estimation is the top one. Again,
we assume that (w;,w,,w3) is normally distributed with
mean and covariance matrix

11 O12 O13
0 and G2 O22 023
0 O13 023 033

respectively. Note

Prob(Jm <Jpop Iy < J[z])
= Prob(w,-w, < ¢, w;-w; < ¢,),

where ¢, =J,-J, 20andc,=J;-J;, 20. Also note
(wW,—w,, w,—w,) is normal distributed with mean and
covariance matrix

(O) and (011+0'22—20'12 c“+023—0'12—013)
0 011+023-C12-013 011+033-2013 /J°
Therefore, according to the following lemma we know
that Prob(J(;y < Jjp), Juj < J3)) 1s an increasing

function with respect to Gy3.

Lemma 1. If (§,,,) is normally distributed with mean
and covariance matrix

0) P11 Plz)
(0 and P12 P22

respectively, then Prob(&§,<c;, £,<c,) is an increasing
function with respect to p,, forc; 20 and ¢, > 0.

Proof. First we have

Prob(§; < ¢y, &y <cy) =
1 *

21V p11P22P12?

1 P Plz)‘l(xl))
J-EXP(_2(X1 x2) P12 P22 xp) )&%

XISCI X2SC2
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1

1
=3 Exp(— ‘2‘(Y12+Y22))d)/1d)’2, (3)

pPnY15C

P12Y1+V P11P22-P122Y25V P1iC2

where in the last equality we have made the following
variable change

(x1)=(p Vp i 0 ) yl)
X2 12NP 11 N (PPl ) \Y2

For notational simplicity, we denote

A(pio) =
(YYD pYiSerpiay1+V PriP22—P122Y25V P1ica)
and

B(p12) = ((y1,¥2): Pr2y1+V P11P22—P12%Y2 < Vp1ica).

In what follows we shall show that the integral in (3)
increases with respect to p;,, which is equivalent to
show that the area A(p;,) becomes relatively larger in
terms of the integrand in (3) when p,, increases. Let us

first drop the condition V p;1y; < ¢; in (3) consider

1 1
o [Exp(5 2420 e,
P12Y1+V P11P22-P122Y25V P1iC2
@)

Note that the distance from the origin (0,0) to the line

P12Y1+V P11P22+P122Y2 = VP1iC2 is equal to ¢/ poy,

which is independent of p,,, hence the line

Pr2Y1+V P11P22+P12%Y2 = Vp1iCy rTotates around the

origin (0,0) clock-wise as p;, increases, which implies
that the integral in (4) is independent of p,,. Suppose
P12’ < p12- Let By = B(p12) — B(p12), B2 = B(p12) -
B(p12), ie., B(p12) = B; + B(p12)NB(p17’) and B(py,) =
B, + B(p12)B(p;7) (see Figure 3).

Since

1 L2 o2

o Exp{ - 5 (91%+y2°) )dyidy,
P12Y1+V P11P22-P122Y25V P1iC2

1 1
=om !EXP(— 2 (YI2+Y22))dYIdYZ,
P12'Y1+VP11P2-P12' 2y 25V p1ic2

we have

1 1
7 J‘EXP(— §(Y12+Y22))d)’1d}’2

B,

1 1
=0 J-Exp(— 5(y12+y22))dy1dyz, )
B,

Py *Y PPz - Pl Y2 =VPi o2

Ll |

The line rotates around
the origin clock-wise as
Pz increases

e 74
pz 1 prpa - P2 ’yz =vPircs

B(p12) = B1 + B(p12 ) B(p12") and B(p12') = B2 + B(p12)nB(p12)

Figure 3: Definition of B, and B,

We also note that since the line

P12Y1+V P11P22+P12%y2 = Vp1ic, Totates around the

origin (0,0) clock-wise as p;, increases, B; must be
located at the left-hand side of B,. Therefore if we define
A;=Bin{(Vpuy: €¢1), and Ay = Bon(Vpiy: <1,
then we have either (1) A; =B, or (2) A, =0, depending
on whether the intersection of two lines
Pr2y1+\R(p11p22+P122)y2 = \R(p;i)cy and

P12Y1+V P11P22+P12'2y2 = N p11C2 is on the left-hand

side or right-hand side of the line V' p;,y; = ¢, (see
Figures 4a and 4b). Based on (5), we have in either case

1 1
n IEXP(— 5 ()’12+Y22))dY1d)’2
Ay
> L EXD(— Lo 2ty 2))dy dy
o 2 1 2 142,
Ar

Since A(p12) = Ay + A(P12NA(p12) and A(py2) = Ag +
A(p12NA(p12), we have

1 1
o JEXD(— 2 (y12+y22))dy1dyz
Ay
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2 ﬁ JEXP(- 1§(y12+y22))dy1dyz,

2
which implies that Prob(§; < ¢, &, < ¢;) is an
increasing function with respect to p;,. This completes
the proof.

A The intersection is located on
WAt At A / left-hand side of the lineVPr1y1 = @

A(P12) = A +A(P)NA(P) and A(Pyp) = Ay + A(P1)NA(p)

Figure 4a. Definition of A, and A, for the case A;=B,

TPuyi=c

The intersection is located on
right-hand side of the line YPuY1 =a

o

~—

A1) = Ay +AP12)NA(p) and A(py) = Ay + AP )AL

> > > > > >

Figure 4b. Definition of A, and A, for the case A,=0
QED

The above theoretical results for N =2 and 3 show that in
general the larger the correlation between estimation
noises the better chance we have to find actual “good”
designs. Of course, for high dimension cases our
calculation becomes extremely difficult and tedious if not
impossible; hence one has to resort experimental
methods as we did in the previous section.

5. CONCLUSION

We are thus moved to conclude that
Correlation in estimation error in general can only
help the ordinal optimization process
with the caveat that estimation errors are not biased or
correlated in perverse ways.
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APPENDIX A: UNIFORM NOISE

In the main body of this paper, we have mainly focused
on the model in which vy, - - -, vy are i.i.d. normal
random variables. As we have argued in this Section 2,
this is a reasonable model for most cases of practical
interest. Nevertheless, we have also investigated the
case in which vy, - - -, vy are i.i.d. uniform random
variables to see how our observations can be affected.
As it turns out similar conclusions to the normal case
can be made in the uniform case as well. In this
appendix we present both experimental and analytical
results we obtained. Let us first present our
experimental results.

Similar to what we did in Section 2, we tested a case in
which wy =v,,and w,,; =aw, + bv,,, (n=1,--- N-
1), where vy, - - -, vy are i.i.d. U(-50, 50) and a and b are
two constants such that a?+b?=1. The results are given
in Figure 5.

From the figure we can see that

« For the flat case, when the correlated factor “lal”
increases from O to 1, the number of good designs in the
top-ten first decreases slightly and then increases. This
implies that the correlation is not always helpful. The
reason why this occurs is as follow. We keep the mean
and variance of w; fixed. But the distribution of w; is not
U(-50, 50). We know that the distribution of the sum of
two uniformly distributed variables is not uniform. So
we can not get uniformly distributed variables w; i=1,
..., 200, though v; and w; have uniform distributions.
Hence, varying "a" causes much more complicated
changes in its effect on uniform noise correlated model.

» However, the decrease of the average number of good
designs, m, disappear for k>0.5 corresponding to the
lincar and steep case. Thus, over all we can still say that
correlation in the estimation noise seldom
hurts but generally helps ordinal
optimization.
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Figure 5: Experimental Results for Uniform Case

Next we investigate the uniform case analytically. Let
us again consider the simplest case N=2, i.e., w, = v,

and w, = av, + bv,, where we assume that v, and v, arc
two independent uniform variables over [~1, 1]. We will
restrict ourselves to a>0 and b>0. Again, let us
calculate Prob(Jm < 1[2])' Wc want to show it is
possible Prob(J(;; < J,)) be a decreasing function of ‘a’
(the correlation between w, and w,), i.e.,

dProb(J 1y <Ji2) <0

G
We assume d > 1 and (d-1) and 'a" are small enough
such that

1+a

1<
1 1-a

d
-— <
1-a <1

(Recalld= J,-J,>0.)
Note b = V1-aZ, we have

Prob(J, < Jz)) = Prob(w,~w, < d)

1
1+a d
JP(VI <\/ E X+ '1_—3) dx,
1

1 1 1

1.2
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Hence,

d d-a?
5 Provd <Jpp| =5~ <o,

a=0 4

which implies that Prob(Jm < J[2]) is a decreasing
function with respect to ‘a’ when 'a' is very small.

We also note that if d is large enough such that

1+ d
—_— <_
l-a 1-a ~ 1

o

then Prob(J;; <J;) = 1 is independent of 'a’. Since
large 'a’ corresponds to the steep case while small 'a’
corresponds to flat case, our results here are consistent
with the above experimental results.

APPENDIX B: NOISE MODEL FOR SIMPLE
QUEUEING SYSTEMS

Example 1. We consider an M/M/1 queue with mean
interarrival time 1=100. The objective function is

J = mean system time + s /service time

where s is a constant. The parameter of interest is the
service time b. 36 different values of b are chosen which
are uniformly distributed over [19.4, 96.4]. We run 200
replications to obtain the correlation between each value
of the parameter and a fixed value b = 41.4, In each
replication the run length is 1000 customers. Figure 6a
shows the correlation between the values larger than
41.4 and the fixed value 41.4, while Figure 6b shows
the correlation between the values smaller than 41.4 and
the fixed value 41.4.

124 Y

1.04

0.015b

0.8 fitcurve y = 10

0.64

correlation

0.44

0.24

0.0 b

414 514 614 74 8l.a 9i.4 1014

parametrically different experiments

Figure 6a: Correlation between the service time b larger
than 41.4 and the fixed value 41.4

124 Y

1.0 4

0.8 4

0.6 4

correlation

0.04%b

04 4 fitcurvey = 1.1*10°

0.2 4

00 v . . 0
414 314 214 11.4

parametrically different experiments

Figure 6b: Correlation between the service time b
smaller than 41.4 and the fixed value 41.4

This shows that our model w,,; = aw, + bv,,;is good
because the correlation between the estimation errors of
two values of the parameter is decreasing exponentionlly
with respect to the difference of the parameters.

Example 2. This is a two-node Jackson queueing
network (see Figure 7).

0.5
— —_—
—L ] - 1l
0.5
node 1 node 2

Figure 7: Example 2.

Customers arrive at node 1 with rate },1=0.5. Upon

service completion at node 1, customers goes to node 1
with probability 0.5 and to node 2 with probability 0.5.

The objective function J is the average sojourn time of a
customer in the network. We want to minimize under
the constraint W, + [, = 4, where T8 is the service rate at

node i. 24 different values of p are chosen which are
uniformly distributed over [1.16, 3.46] and B, = 2.46 is

(arbitrarily) chosen as the reference value. Again we run
200 replications to obtain the correlation between each
value of the parameter and the reference value. In each
replication the run length is 1000 customers. Figure 8a
shows the correlation between the values larger than
2.46 and 2.46 and Figure 8b shows the correlation
between the values smaller than 2.46 and 2.46.

In this case the correlation between the estimation errors
of two values of the parameter isdecreasing
polynomially with respect to the difference of the
parameters. So we can not use the simple model w,,; =
aw, + bv,,, here.
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Figure 8a: Correlation between the service rate p, larger
than 2.46 and 2.46
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Figure 8b: Correlation between the service rate |
smaller than 2.46 and 2.46

Based on the above two examples, we draw the
following conclusion:

The correlation between the estimation errors of two
values of the parameter is positive and decreasing with
respect to the difference of the two values of the
parameter. Furthermore if the correlation is decreasing
exponentionlly it can be characterized by the simple
model w,,; = aw, + bv,, ;.
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