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ABSTRACT

This paper is concerned with the problem of applying
simulation to efficiently estimate the long-run average
cost m associated with a Markov chain {X,} when
a cost F(X,_;,.X,) is incurred during the nth state
transition, n 1,2,... Our approach is to replace
the cost structure F by a (smoother) cost structure F’
which provably results in the same long-run average
cost m, and (hopefully) results in easier simulation.
We show that the smoothing techniques proposed in
this paper lead to variance reduction when applied
to two state Markov chains, and we also present em-
pirical results that show that the application of these
techniques can lead to variance reduction on more
general Markov chains.

1 INTRODUCTION

Let {X,} be a discrete time Markov chain with state
space S = {0.....K}. initial distribution 4, and a
transition probability matrix P. Suppose that for
all i,j € S. a cost F(i,j) is incurred whenever the
Markov chain {X,, } makes a transition from the state
i to the state j, and that we are interested in estimat-
ing the long-run average cost

N
. 1 . ,
m = N]l_l.lz v F(Xn_1,Xn).
n=1
We assume that the Markov chain {.X,, } has a unique
stationary distribution m. Then it is possible to show
K

that
.
d_wli) Y PUGIF(G,)) as.

=0 j=0

m=

~

One way of estimating the long-run average cost m
is by applying what we refer to as “naive” simulation:
choose a suitably large time horizon N, generate Xg
using the initial distribution p and Xy,..., Xy using
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the transition probability matrix P, and use

N
. 1 . .
m(N) = & > F(Xn_1,X5)
n=1

as an estimate for m. Unfortunately, m(N) some-
times has a high variance (this is particularly the case
in rare event simulation, where m is very small), so
the development of more efficient methods for esti-
mating m is presently an active area of research. Im-
portance sampling is a technique that has been devel-
oped for this purpose (see for instance Glynn and Igle-
hart (1989), Siegmund (1976) and Andradéttir, Hey-
man and Ott (1991, 1992b)). This method involves
conducting the simulation of the Markov chain { X, }
with an alternative initial distribution g’ and tran-
sition probability matrix P’ and then using the like-
lihood ratio random variable to translate the results
into an unbiased estimate for m. Control variates
can also be used to obtain more efficient estimates
of m (see for instance Lavenberg and Welch (1981),
Rubinstein and Marcus (1985) and Andradéttir, Hey-
man and Ott (1992a)). In this paper, we will focus on
smoothing methods for estimating m. These meth-
ods involve replacing the original cost structure F
with an alternative cost structure F’ in such a way
that the long-run average cost m remains unchanged.
For more detail on the smoothing methods that are
discussed in this paper, the reader is referred to An-
dradottir, Heyman and Ott (1992a).

This paper is organized as follows: in Section 2, we
present some methods for smoothing the cost struc-
ture F', in Section 3, we show how these methods com-
pare with naive simulation when applied to Markov
chains on two states, and Section 4 contains empirical
results, both for the example of Section 3 and for an
example taken from Heyman (1992). Finally, Section
5 contains some concluding remarks.



451 Andradéttir, Heyman, and Ott

2 SMOOTHING

The essential idea behind smoothing is that if F7 is
an alternative cost structure having the property that
the long-run average cost

N
. I . .
\I!” T Z I I(‘\ n—1-, A\ n)

n=1

associated with the cost structure I equals m alimost
surely, and if F/ s smoother than I in the sense that
the random variables F/(X, _;. X)) are in general
closer to m than the random variables F(X,_, X,,),
then it is reasounable to expect that

has a lower variance than m(N).

One way of smoothing the (matrix) cost structure
F is by replacing it with a (vector) cost structure f,
where

K
— ZP(I}j)F(i,j) (1)

for all 7 € S. (‘This smoothing technique is closely re-
lated to a variance reduction scheme proposed earlier
by Heidelberger (1980).) It is easy to show that

lim E f(Xn_1) = m as.,

N—ro
n=1

so this method for smoothing the original cost struc-
ture F does not affect the long-run average cost. We
can therefore generate Xg using the initial distribu-
tion g and Xy, ..... X' » using the transition probabil-
ity matrix I, and use

(3= L3 1,

n=0

as an estimate of in. In Section 3. we show that when
K =1and for7 =0,1, F(i,0) =1 and F(:,1) =0,
this smoothing method will always result in variance
reduction.

Another method for (possibly) smoothing the (ma-
trix) cost structure I is by replacing it by a (matrix)
cost structure If, where

H( gy =100) —90) +90) (2)

for all /. j € 5. and where g is an arbitrary vector. It
is possible to show (hat

N
. 1 . .
.\l!” T E H(X,_1,X,) =mas.

n=1

(sce Andradéttir, Heyman and Ott (1992a)), so this
smoothing method does not affect the long-run aver-
age cost. We can now combine the smoothing meth-
ods of equations (1) and (2) and replace the (ma-
trix) cost structure I' by the (vector) cost structure
h, where

.
> PG, j)H(, )

j=0

hi)

-
Y PUGIFG ) = g(i) +9()] (3)

ji=0

for all i € S. It is easy to show that

N
. 1 .
N]I_I};J v E lh()u,,_l) =m a.s.,
n=

so this method for smoothing the cost structure F
does not affect the long-run average cost. We now
present a good way of selecting the vector g of equa-
tion (3).

It is clear that we would like to select the vector
¢ in such a way that the vector h of equation (3)
becomes as smooth as possible. The ideal situation
would be to select the vector ¢ in such a way that all
the elements of h are equal to a constant ¢. In that
situation equation (3) implies that

ce+ (I —P)g= Me, (4)

where T = (1....,
matrix M is

1) and the (7, j)th element of the

M(:,g) = P(i.J)F(i.])

for all 1.j € S. Equation (4) is often referred to
as Poisson’s equation, and it is well known that this
equation determines the constant ¢ = m uniquely and
the vector g up to an additive constant (see for in-
stance Theorem 1-13 in Heyman and Sobel (1984)).
If it is possible to solve equation (4), then it is clearly
not necessary to apply simulation to estimate m.
However, in the situation where it is either very diffi-
cult or impossible to solve equation (4), we can obtain
an approximate solution g and then generate Xg us-
ing the initial distribution g and X;,..., Xy using
the transition probability matrix P, and use

mg (N N+l Zhl

as an estimate of m. The following iterative pro-
cedure can be used to obtain a sequence {g(¥)} of
approximate solutions to equation (4): Let a be an
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arbitrary constant and let u be an arbitrary vector
having the property that uTe = 1. If g'® is an arbi-
trary vector, and if, for all & > 0,

gt = (al + M)e + (P — cuT)g'®), (5)

then it is possible to show that the sequence {g'*}
converges to a solution of equation (1) under gen-
eral conditions (see Andradottir, Heyman and Ott
(1992a)). Morcover, it is possible to show that when
k is large enough. 12,4, (.\V) has a lower asymptotic
variance than m(.V) (see Andradéttir, Heyman and
Ott (1992a)). In Section 3, we show that when
K =1and for/ =0,1. F(i,0) =1 and F(:,1) =0,
then 1, (V) has a lower asymptotic variance than
my(.V) when k is large enough; in one important spe-
cial case. k = 1 is large enough.

3 MARKOV
STATES

CHAINS WITH TWO

For the simple case of two states, we can do the ma-
nipulations needed to effectively compute the vari-
ances of m(.N). my(N) and mqm( ). k= 1.2,.

and then make comparisons. Let the transition ma-

trix be
Il —c¢ c
P
! —[ d 1_(1]

with 0 < e.d < 1 to ensure irreducibility.
Suppose we want to estimate 7(0), so

[ 4]

Let M,(.N)be the tln numlxr of visits to state i by

time N (that is M( En 11{,\ =i} where I4 is
the indicator random mrnal}le). i = 0,1. For naive
simulation, (V) = Mg(N)/N and

Var[Mo( V)]

o (N) = Varin(V)] = e

From Mo(N) + Mi(N) = N, it is immediate that

s2(N) = Var[My(N)] _ ¢ ov[Mo( V), Mi(N))

N? N2

When the vector cost structure [ = (1—c.d)T is used,
the variance a7 (V) of 1y (V) is given by

‘ , Var[ Mol Var My (N
O’j’(,\') = (1—¢)? "r[N‘; ) 4 d° dr[le( )]
+2(1 = e O‘[A""(x;‘ Mi(N)]
= (L—c—d)?o%(N) (6)

< a*(N),

so the smoothing method (1) always results in vari-
ance reduction in this situation.

Now we turn to the estimator 7, (V). Let h(k)
be the cost structure obtained by using the vector
g'*) of equation (5) in equation (3):

(k) Z

i=0

>

1_))H‘k) (4,7)

for all 7 € S, where
HM(i, j) = F(i,j) -

for all i,j € S. Take uT = (v,1 — v), so the iteration
matrix in (5) is

g () +¢M)

l—c—v c+v-—-1

P
A=P—cu _[ d—u v—d

The eigenvalues of A are 0 and A = 1—c—d, and the
Cayley-Hamilton theorem implies that A7 = M~14,
for all j. Thus, the solution of (5) is

k-1
o= (S a)arago, @
j=0

k=1,2,... where

_|a+l-c
@= a+d

The matrix H*) = [H¥)(4, j)] is given by

) = [} 8}+(g“"<1>—g“"(0))[ 2 (1,] (8)

The variance of the estimator m ) (N), 03“‘)(1\7), is

given by
Var[h*)(0)Mo(N) + R (1)M (N
oy = YEEOMN) 4 DU ()
= [AF)(1) = K*)(0))203(N). (9)
From (7) and (8) we obtain
h9)(0) — hKI(1) = bAK, (10)

where
b=1-(c+d)l-g" 1)+ g (0)].
Substituting (10) into (9) yields
ol (N) = bEIAEGZ(N). (11)
We have crzm(N) < af(N) if and only if

bINZE=2 < 1. (12)
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This condition holds whenever
0<(c+d)[l =g +¢'20)) <2 (13)

(this makes 6% < 1). In particular, (13) is valid when
g'"10) = ¢!'M(1) = 0. In general, (12) holds when

log b
log [A]

This contains & = 1 when A is sufficiently small.

Remark: Extending the results in this section to
Markov chains with three states is difficult. This is
pritnarily because for three state Markov chains, the
transition probability matrix P has six parameters,
the matrix A = P —cuT has two non-zero eigenvalues
that are roots of a quadratic equation, and we don't
have a simple relationship between the variance and
covariance terms of M,(N), 1 =0,1,2.

4 EMPIRICAL WORK

In this section, we compare the performance of
naive simulation with the performance of two of the
smoothing methods that were discussed in Section 2:
replacing the (matrix) cost structure F' by the vector
cost structure f of equation (1), and replacing the
(matrix) cost structure F' by the (vector) cost struc-
ture h of equation (3) with the vector g being an ap-
proximate solution to equation (4) obtained by using
the iterative procedure (5). For each example and
each sample path length .V, common random num-
bers are used to be able to compare the performance
of the three techniques more meaningfully. In order
to compute the sequence {g*)} of equation (5), we let
a=1.u" =(1,0,...,0)and (¢'°)T = (0,...,0). We
show in Andradottiv, Heyman and Ott (1992a) that
the asymptotic variance of 11,4, (N) does not depend
on «a and u. so this choice is not. critical.

Example 1 Consider the two state Markov chain of
Section 3 with ¢ = 0.9 and d = 0.2. We want to apply
the three simulation technigues mentioned above to
estimate m(0) = & o 0.181%18. Tables 1 and 2 show
the average values and the sample variances of the
point estimators m(.NV), 1y (N) and 1,0 (N), k =
1, 2,3, obtained after 100 replications, for N = 100
and N = 10° respectively.

In both Tables | and 2, the variances have the form
Fx 107", where /3 is a constant. The reason is that us-
ing common random numbers makes the 100 realiza-
tions of My(N') the same over all estimators (this ac-
counts for ;3), our choices for ¢ and d make A = —0.1,

Table I: Simulation Results for a Two State Markov
Chain with ¥ = 100

Estimate Mean Variance
m(N) 0.1867 1.184 x 10-3
my(N) 0.1813 1.184 x 10~

ooy (N) [ 0.181867 1.184 x 10~

iy (V) | 0.181813 | 1.184 x 10~

oo (N) | 0.1818187 | 1.184 x 10~

Table 2: Simulation Results for a Two State Markov
Chain with N = 100, 000

Estimate Mean Variance
m(N) 0.18178 1.254 x 10-°
my(N) 0.18182 1.254 x 10-8

m,my (N) [ 0.1818178 | 1.254 x 10-10

My (N) | 0.1818182 | 1.254 x 10-12

e (N) [ 0.1818182 | 1.254 x 10-14

and our choice for g(®) makes b = A (accounting for
the 10~7 term). The empirical variances conform to
the formulas (6) and (11) in Section 3 exactly.

Example 2 Consider the five hundred state Markov
chain having the transition probability matrix given
below equation (10) in Heyman (1992), where
Char = 250, u = 0.2, v = 0.7, and, for all k, a
is the probability a binomial variable with parame-
ters N = 4 and p = 0.9 equals k. We want to apply
the three simulation techniques mentioned above to
estimate m(0) ~ 2.963 x 10~5. Table 3 shows the av-
erage values and the sample variances of the point es-
timators m(N), 1y (N) and 1,4 (N), k = 3,50, 100,
obtained after 30 replications, for N =3 x 10°.

Table 3: Simulation Results for a Five Hundred State
Markov Chain with N = 300, 000

Estimate Mean Variance
m(N) 2.82 x 10-% | 7.03 x 10~
my(N) 2.88 x 105 [ 1.49 x 10~ 11

My (N) | 2.88x 10-% [ 1.44 x 10~ 1!

M50 (N) | 3.04 x 107> | 6.22 x 1012

M 100)(N) | 3.04 x 10-5 [ 6.08 x 10~ 2

The variance of 172,50 (V) is an order of magni-
tude smaller than the variance of 1m(N). The approx-
imately 50% decrease in the variance of Thg(so)(N)
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compared to the variance of 1, (N) conforms to
the prediction made from Theorem 6.2 (as shown in
the graph in Section 10) in Andradéttir, Heyman and
Ott (1992a). That graph also predicts that diminish-
ing returns has sat in when & = 50, as demonstrated
by the small additional variance reduction achieved
by increasing & to 100.

5 CONCLUSION

We have presented niethods for smoothing the origi-
nal cost structure F' that can lead to variance reduc-
tion over naive simulation. When these methods are
applied to two state Markov chains, they are guar-
anteed to result in variance reduction, and we have
shown empirically that they can also result in vari-
ance reduction when applied to more general Markov
chains.

A major strength of the smoothing methods dis-
cussed in this paper is that they can be applied
mechanically. This is not the case for importance
sampling, another variance reduction technique that
can be applied in this context. Moreover, when
these techniques are applied to two state Markov
chains, smoothing always results in variance reduc-
tion. whereas importance sampling may result in a
variance increase (see Andradottir, Heyman and Ott
(1991)).
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