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ABSTRACT

Simply because of their rarity, the estimation of the
statistics of buffer overflows in queueing systems via
direct simulation is often very expensive in computer
time. Past work on fast simulation using importance
sampling has concentrated on systems with Poisson
arrival processes and exponentially distributed ser-
vice times. However, in practical systems, such as
ATM switches, service times are often deterministic
and constant. In addition, arrivals from services, such
as variable bit rate video are often correlated. These
may be modeled by an auto-regressive process. This
paper demonstrates how one can generate an asymp-
totically optimal simulation system (in the sense of
variance) for queues with deterministic service times
and auto-regressive arrival processes.

1 INTRODUCTION

In a queueing system with finite buffers, some pro-
portion of customers arriving at any queue is lost due
to buffer overflows. While this number will be small
in a properly dimensioned system, it is of interest be-
cause there is often a large cost associated with such
a loss. However, the very rarity of the event of los-
ing a customer makes direct simulation very costly in
terms of computer time, if not impossible. For some
simple systems, such as the M/M/1 queue, it is pos-
sible to analytically calculate the mean time between
overflows, and simulation is unnecessary. However,
for more complex systems, it is not generally possible
to calculate the recurrence times of buffer overflows.

In broadband ISDN, all services, whether voice,
video or data, will be transferred on a packet net-
work. The data will be broken up into cells, each
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containing 48 bytes of information. Because the cell
size 1s deterministic and constant, a queueing model
with deterministic virtual service times is required to
model the switching elements in such a network. For
such queueing models, there are no simple closed form
solutions for quantities such as the invariant proba-
bility, and calculation of cell loss rates is typically not
feasible.

In such a network, it is not possible to completely
prevent cell loss. Because of constraints imposed by
the different service types, it is expected that the cell
loss probability will be of the order of 10~°. In a real
network, these losses might be expected to occur on
timescales of the order of minutes or hours. However,
in estimating the loss rate by simulation on a digital
computer, it is possible that years of CPU time may
be required, even on a fast computer, such as a Sun
SPARCstation (see e.g. Frater (1990)).

With these required simulation times, it is fair to
say that simulation is not just difficult, but impos-
sible. In digital computers, the effects of pseudo-
random number generators can make simulation un-
reliable where a large number of calls to the pseudo-
random number generator are involved, even for sim-
ulations that may be feasible in terms of computer
time, (see e.g. Heath and Sanchez (1986)). In fact,
the main conclusion of Heath and Sanchez (1986) is
that the period of the pseudo-random number gen-
erator must be at least some multiple of the square
of the number of samples required. It is not difficult
to construct examples of, for example, queueing net-

works where this criterion requires periods in excess
of 1030,

Several authors have described methods of using
importance sampling to improve the efficiency of sim-
ulations of rare events, (see, e.g. Cottrell et al (1983),
Parekh and Walrand (1986) or Frater and Ander-
son (1991)). These approaches, based on large de-
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viations theory, provide asymptotic optimality in the
limit as the events of interest become infinitely rare.
Such simulations are optimal in the sense that they
minimize the variance of a probability estimator, and
hence minimize the simulation time required.

The use of importance sampling for estimating the
statistics of buffer overflows in queueing networks is
addressed by Parekh and Walrand (1989), Frater and
Anderson (1989) and Frater et al (1991). The empha-
sis in these works is M/M/1 queues and Jackson net-
works, and it is shown how one can find an asymptot-
ically optimal simulation system for simulating buffer
overflows in these systems.

As described above, these assumptions are unsatis-
factory in many practical applications, such as broad-
band ISDN. In such systems, it is more usual to
have systems whose service time is both deterministic
and constant. Some progress towards developing effi-
cient techniques for queues with deterministic servers
were reported in Frater et al (1990). In this paper,
the application of large deviations theory and impor-
tance sampling to the simulation of buffer overflows
in M/D/1 queues was described.

However, the arrival traffic generated by the var-
1ous services anticipated for the broadband ISDN is
not suitable for modelling by a Poisson process. Many
alternative have been postulated. For example, it has
been proposed by Maglaris et al (1988) that an au-
toregressive process be used for modeling the traf-
fic generated by a variable bit rate video source. In
this paper, we will demonstrate how the similar tech-
niques to those applied in Frater et al 1990 can be
used to provide efficient simulation of buffer overflows
in a queue with such an arrival process and with a de-
terministic server.

2 PROBLEM FORMULATION

We consider a queue with a finite buffer of size N and
a deterministic server with virtual rate p. Let A(k)
be the number of arrivals that occur during the kth
sampling interval. We will assume that the transi-
tions of A(-) are controlled by a Markov process. By
sampling, we can form a discrete-time Markov chain
whose state is the number of customers in the queue.
Let z(-) be a Markov chain formed by sampling the
number of customers resident in the queue in an ap-
propriate manner. (For example, we might sample
the state immediately after each service.) Then z(-)
evolves as:

z(k+1)=z(k) + Mk) - p (1)

We will assume that there is an appropriate boundary
condition that prevents z(-) from becoming negative.

We will use the term cycle to denote each piece of
trajectory starting with the queue empty and ending
with the first time that either the buffer is empty
again or overflows. Let 7 be the time for an overflow
to occur, starting with the buffer empty, and « be the
probability that a cycle ends in an overflow!. Then
we have:

(2)

where Ji is the length of cycle k. (We note that
this assumes that the cycles are independent, as is
common.)

The expected length of a cycle E[Ji] is of moder-
ate size. Hence, this quantity is estimated easily via
direct simulation. However, the probability that a
cycle ends in an overflow a will be very small when
overflows are rare. In this paper, we will describe an
with efficient method for estimating a by simulation
using importance sampling.

3 IMPORTANCE SAMPLING

The idea in importance sampling is as follows. Sup-
pose that we are interested in certain (rare) events in
a system S that we can simulate on a digital com-
puter. Instead of simulating S, we simulate a second
system S, which has the property that the eventsin S
and S correspond in some way. In particular, to the
rare events A in S correspond events 4 in S (which
may be the same as the events A). The correspon-
dence is such that

1. the events A in S are more frequent that the
events A in S, and

2. the connection between S and S allows one to
infer P(A) if one knows P(A4). (P(A) is the prob-
ability of the event A in S.)

Let Ve = Lithe buffer overflows in cycle k}: Then
in our original system S we have:

EVi] =« 3)

Let L; denote the likelihood ratio & during cycle k,
i.e. the ratio of the probabilities of the trajectories
under the measures P and P in S and S. We observe
that the L are 1.1.d. and

—E—[Lk Vk] = E[Vk] =« (4)

1In many situations, other quantities, such as the cell loss
probability, may be of more interest. In such cases, a slightly
different technique will be required.
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Hence, if we simulate the system S for p cycles, we
can estimate the probability that a cycle ends in an
overflow « from:

L1V1+L2V2+...+vap (5)
P

Now we have not yet suggested how the system
S might be chosen in order to ensure that a good
speedup is obtained, or better still, to maximize the
speedup obtained. Nor have we defined precisely
what we mean by speedup. In many ways, we have
replaced one difficult problem (finding the probability
of overflow) with another.

a=

4 OPTIMAL SIMULATION - LARGE DE-
VIATIONS

The problem of finding the best system to use in im-
portance sampling can be posed as an optimization
problem as follows. Let A be a rare event for a sys-
tem S, with @ = P(A) < 1. For a direct Monte Carlo
simulation involving n independent experiments, we
could estimate « via:

Bn = -3 1a(w) (6)

where the w; are the i.i.d. outcomes of the experi-
ments, and 14 takes value 1 when the event A has
occurred, and zero otherwise. The variance of &y, is
easily computed as

Elo— )7 = ~(a - a?) )

Alternatively, consider a probability measure P as-
sociated with a system G, with P absolutely contin-
uous with respect to P, such that the same event
spaces apply for S and S. Using S we can obtain a
second estimate

fo= 2 3 LA(@)L@) (8)
i=1

where [ = %’-;- and the @; are the i.i.d. outcomes of

n experiments using S. The variance of @ is different
to (7), and is obtainable as

}' ZW —(JJ —(12
(/AL()dP() ) (9)

n

We want this to be as accurate as possible. So we
want to adjust all the probabilities in S to new ones
in S so that

(0 = [ ¥w)iP() (10)
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is minimized. This corresponds to minimizing the
time necessary for simulation. In fact, the system §
that we will find will be asymptotically optimal in the
limit as the buffer size tends to infinity.

Given a system S minimizing (*)2, we can use (5)
to find the value of a for the original system S from
(much faster) simulation performed on S.

5 FAST SIMULATION SYSTEM FOR AU.
TOREGRESSIVE PROCESS

Let z(k) be the state of a Markov chain formed by
sampling the system S, which is now assumed to be a
queue with a virtual service rate that is deterministic
and constant. We assume that the state-transition
equation for z(-) can be written in the form

AMk+1)—A = a(A(k)—A)+bw(k) (1)
sk+1) = sk)+Ak)—p  (12)

with A(0) = z(0) = 0,0 < a < 1. w(-) is a white noise
process. A is a constant that determines the equilib-
rium point of the arrival rate A(-). We assume that
there is an appropriate boundary condition that pre-
vents both A(-) and z(-) from becoming negative. We
also assume that p is large enough that the Markov
chain is asymptotically stable in the sense that, on
average, its state will tend towards zero. In solving
the optimization problem, we will ignore the bound-
ary conditions that prevent the state from becoming
negative.

Let F(.) be the jump distribution of the random
process w(-) associated with the system S we wish to
simulate. Its Cramer transform h(y) is given by:

h(y) = inf [sy - log/

-0

I

[ee]

e“dF(:)] . (13)
We define a new deterministic system

N(k+1)—A = a(N(k)—A)+by(k) (19)

dk+1) = (k) +Nk)—p (19
Let
T-1
V(T,9(0),...,y(T = 1)) = Y _ h(y(k))  (16)
k=0

where y(k) is the value of y at time k. We wish to
minimize V (-, -) with respect to T and the y(k), sub-
Ject to the constraints

2/(0) = MN(0)=0 (17)
Z(T) = N (18)
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In Cottrell et al (1983), it is shown that the solu-
tion of this optimal control problem with an infinite
horizon (i.e. t — oco) defines the mean trajectory of
the optimally efficient importance sampling simula-
tion system.

For simplicity, we will assume that w(-) has a gaus-
sian distribution, with unit variance. We will also as-
sume that N is large, and hence that T is also large.
Then (16) can be rewritten:

T-1
1
VT, u(T =)= sv*(k)  (19)
k=0
This optimization problem would be a garden variety
discrete time linear optimal control problem if:

1. the system (z(-), A(-)) defined by (15) were con-
trollable; and

2. p=0.

Given that neither of these conditions holds, and that
the standard solution for the optimal control prob-
lem is therefore not available, we will use the method
of lagrange multipliers to solve this optimal control
problem. We define the lagrangian:

T-1 T-1
L= () =g x | S (V) ~Tu—N| (20)
k=0 k=0

Let y*(-) indicate the optimal value of y(-). Then it
can be shown that

y" (k) =2(¢ = A)(1—a) (1-aT"%)  (21)
Letting T' — oo, we have
y*(k) =2(k—A)(1-a) (22)

Let A*(-) be the arrival process in the optimal sim-
ulation system, and z*(-) the number of customers
resident in the queue. Then:

A+1)—A* = a(W*(k)— A*)+ bw(k) (23)
c*(k+1) = z(k)+ I (k)—p (24)

where
A =2u—A (25)

It should be noted that this analysis deals only with
a single video source, and that it does not take into
account interactions between sources that may have a
large impact on the loss rate. The application of this
analysis to systems involving multiple video sources
is being investigated currently.
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Figure 1: Simulation time vs buffer size for direct
simulation.

6 SIMULATION RESULTS

In order to verify the above results, a number of sim-
ulations have been carried out. The results are de-
scribed below. For convenience, in all cases the vir-
tual service rate of the switch was taken to be 1. In
addition, no attempt was made to model the fact that
the number of cells generated in a video frame is al-
ways an integer, or multiple arrival processes feeding
a single switch. Also, in a real network, the arrival
of cells and their service is spread throughout a video
frame. Here, we assumed that all cells arrive at the
beginning of a video frame, and that all cells that are
to be serviced during that frame are serviced immedi-
ately. All of these effects would need to be taken into
account in any simulation study designed to estimate
network performance.

Figure 1 shows how the simulation time required
for direct simulation increases with buffer size (N)
for a switch with virtual service rate 1, fed by an
AR(1) process, as described above. The parameters
of this process are A = 0.5, a = 0.5, b = 0.3, and
A* = 1.5. These results were obtained using an im-
portance sampling simulation. Clearly, with simula-
tion times ranging from 10!° to 10!!5, these simula-
tions are impossible to perform using direct simula-
tion.

We note that for the series of simulations shown in
Figure 1, there is an exponential relationship between
the required simulation time and the buffer size. In
Frater (1990), a similar relationship was observed to
hold for M/D/1 queues.



Table 1: Comparison of results.
a

N | Direct | Fast
10 | 0.11 0.104
20 | 0.079 | 0.081
30 | 0.075 | 0.075

40 | 0.066 | 0.061

Table 1 shows a comparison of results obtained for
direct and fast simulation for a number of different
buffer sizes in a queue with virtual service rate 1, and
arrival process defined by A = 0.7, ¢ = 0.7, b = 0.8.
In each case, the standard deviation of the estimate
@ is 0 = 0.05. In the case of the direct simulation,
this corresponds to 95 % confidence that the error is
less than 10 %. For the fast simulation, because the
likelihood ratio depends on the trajectory followed
during each cycle, it is not possible to easily establish
such a confidence interval. However, the largest dif-
ference between the results obtained by the different
techniques is approximately 7 %, which suggests that
the two methods are consistent.

7 CONCLUSION

Further work needs to be done to extend these results
to higher order autoregressive processes. However,
the work described here demonstrates the feasibil-
ity of using this approach in estimating the statistics
of buffer overflows in queueing systems with auto-
regressive arrival processes.

Clearly, before practical application of this tech-
nique can be made to broadband networks, several
refinements will be required. These include:

¢ allowing for the fact that a large number of
sources will feed a single switch in the network,
and that losses may occur as a result of simulta-
neous bursts in several switches;

¢ noting that there is an upper limit on the rate of
a source, caused by the data rate of link fed by
the source.

Extension of the analysis to a network of switches
would also be advantageous.
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