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ABSTRACT

Based on an ensemble-theoretical definition of
randomness and on the full hierarchy of correlation
coefficients, a general strategy for the generation of
random numbers is described. Use is made of well-
tempered pseudorandom sequences, in which the
remaining correlations are of very high order or cover
extreme distances and thus are beyond the reach of
usual testing procedures. In particular, the binary
sequences produced by a cascade of a small number of
shiftregisters characterized by primitive trinomials
with Mersenne-prime degrees are suitable for large-
scale Monte Carlo simulations.

1 INTRODUCTION

Due to the increasing availability of ever faster and
more efficient machinery, only one obstacle remains
in large-scale Monte Carlo simulation: the unreliable
quality of the usual recipes for the generation of vast
amounts of random numbers. Indeed, perfect recipes
do not exist. For efficiency and general control all
recipes have to be based on simple deterministic
methods, in conflict with any notion of randomness.

Many different methods have been suggested; see
the reviews given by Knuth (1981), Marsaglia (1985),
Ripley (1990), James (1990), L’Ecuyer (1990), and
Niederreiter (1991). The most common recipes are
based on the linear-congruence, the lagged-Fibonacci
or the binary-shiftregister method, or variants thereof.
These have often been applied succesfully, depending
on the special parameters of a particular recipe and
on the simulation problem. Yet, also a number of
accidents have occurred, in which hidden correlations
between the random numbers interfered constructively
with unknown correlations in the simulated system.

Testing a particular random-number generator is
a rather time-consuming and unsatisfactory activity,
especially because tests tend to be arbitrary and to fall
short of what is required for large-scale Monte Carlo
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simulations. For instance, in the so-called spectral test
the independence of only ¢ consecutive numbers of,
say, 32 bits is studied. Since ¢ has to be restricted to
values below 10 for practical reasons, at best only the
correlations between 320 consecutive bits are proven
to be small. This is much less than is needed to
exclude the presence of systematic errors in the
simulation results. Similar comments apply to other
tests. In principle, a random-number generator should
be tested in the context of the simulated system it is
used for, but this advice is not very helpful. Improved
methods for random-number generation will have to
be based on theoretical arguments rather than tests.

In this paper, a new sirategy for random-number
generation by means of binary shiftregister sequences
is reviewed (Compagner, 1991). In Section 2 general
correlation coefficients are defined and in Section 3 it
is shown how unavoidable correlations can be made
harmless. Practical recipes based on results by Kurita
and Matsumoto (1991), Heringa er al. (1992), and
Wang and Compagner (1992) are given in Section 4.
Concluding remarks are made in Section 5, where also
a generalization to other methods is suggested.

2 ENSEMBLES AND CORRELATIONS

A convenient background to discuss random binary
sequences is provided by ensemble theory. Consider a
sequence {a;(j)} of N bits ay, ..., apy . It is identified
by the number j of which it is the binary expansion
(j=0, .., N 1). An ensemble is defined by giving
a weight P to each sequence j ; the weights are zero
or positive, and add up to 1. A usual measure for the
amount of randomness is the ensemble entropy

@

Three particular ensembles are of interest. The
gambling ensemble is defined by p; = 27N for allj. It
contains all sequences, with equal weights. The
singular ensemble is given by Pj =Sk and consists of
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the single sequence k. Finally, the scanning ensemble
is defined by p;, = 1/N for all the N sequences j' that
under cyclic translanons are identical with a given
sequence j. To avoid end effects the sequences are
assumed to be periodic, a (] ) = al+N(] ), with N as
shortest period.

In analogy with the Ising model in statistical
mechanics, a general correlation coefficient is defined
in the following manner. First, the binary sequence
j with elements a,(j) = 0,1 is replaced by the
corresponding parity sequence with elements b;( j) =
1, —1 respectively (the advantage is that the expected
mean parity is 0 and absent from the formulae). Next,
an ordered set I(q, s) = {iq, ..., I } of g different and
fixed positions in the sequence is mtroduced where q
is the order and s = i —i;+1 the size of the set.
Finally, the correlation coefficient of order q and size
s pertaining to set I is defined by

c =X p II w0, e
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the value of which lies on the segment [1, —1].

It is easy to show that these coefficients obey a
weak conservation law for the mean value (in which
for most ensembles contributions of opposite sign
largely cancel one another) and a strong one for the
mean-square value (Compagner, 1991a):
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The summations over all 2V different sets I include
the empty set I(0, 0), the correlation coefficient of
which is always 1.

In the gambling ensemble all true correlation
coefficients are zero, as follows from (2) or (4), and
the entropy (1) is maximal: $ = N In 2. It is natural
to identify this situation with complete randomness
and total lack of information. The opposite is the case
for the singular ensemble, in which all correlation
coefficients are either 1 or —1; in a single sequence,
everything is fixed and all sets are completely
correlated or anticorrelated. The entropy is now equal
to the minimum value S = 0. In this case, complete
information about the sequence is available; in a given
single sequence nothing is random.

A more subtle point of view is provided by the
scanning ensemble, to which the attention is now
restricted. In this case, a correlation coefficient
measures the product of a particular set of parities at
fixed relative positions, averaged over the full period
of the sequence. For instance, for the sets I = 1(2, 5)

with ¢ = 2 the quantity C; as a function of s is just
the usual paircorrelation function. The scanning-
ensemble entropy is S = In N, which is far from
maximal. Although the mean value (3) usually is
exactly zero, the mean-square value (4) is 1/N, which
is small but not zero: not all correlation coefficients
of a sequence can be arbitrarily small. In fact, a
deterministic production rule for a sequence always
corresponds to a completely correlated set, from
which other such sets are generated Eq. (4) shows
that among the huge number of 2N different sets that
exist, these correlated sets are a small though crucial
minority; finding them by means of testing is like
looking at night for a needle in a haystack.

This is why tests of random-number generators are
difficult and perhaps even misleading. The more one
requires that a certain test is passed, the more one
selects recipes and sequences such that the implicit
correlations for which the test is sensitive are small,
and the more one risks to make other correlations
large for which the simulated system happens to be
sensitive. To improve the quality control of random-
number generators, the correlated sets that are
tolerated need to be specified. Such a specification
should in fact be part of any definition of randomness.

3 WELL-TEMPERED PSEUDORANDOMNESS

From these observations, an optimal strategy
follows in just two steps. First, it is required that all
sets below a certain size n are uncorrelated, where n
should be as large as is possible. The maximum value
isn =In N/In 2, which is the number of degrees of
freedom (supposed to be integer) in a sequence of N
bits; in a binary maximum-length sequence produced
by a linear-feedback shiftregister, n is in fact equal to
the length of the shiftregister. Consider a sequence of
N bits in which all 2" = N different strings of n bits
occur just once, overlaps allowed; this is called here
a pseudorandom sequence. For sets of size n or
smaller, the scanning ensemble for a pseudorandom
sequence of N bits is equivalent to the gambling
ensemble for sequences of n bits. Therefore, the
correlation coefficients for all these sets vanish.
Pseudorandomness in this strict sense is almost
identical with the usual condition of maximum length
obeyed by many random-number generators. This
condition is now seen to guarantee the vanishing of
all correlation coefficients for sets of size n or smaller.

Many pseudorandom sequences produce random
numbers of poor quality, and therefore a second step
is necessary. Since n exhausts the available degrees of
freedom, a pseudorandom sequence of N bits must
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have non-zero correlation coefficients for sets of size
n+1. A deterministic production rule is equivalent
with a first completely correlated set of size n+1,
iteration of the production rule to generate further
elements of the sequence then leads in an increasingly
stochastic fashion to all other correlated sets (all with
correlation coefficient 1), which are of larger size. The
best strategy is to require that the first correlated set,
ie. the production rule, is of high order. In addition,
it should be sufficiently irregular to exclude that only
after a few iterations other correlated sets arise that
are of low order. Hence the definition:

A well-tempered pseudorandom sequence is

a pseudorandom sequence with many degrees

of freedom (n>1 i ) in which all correlated &)
sets are either of high order (q >nll2 ) or of

very large size (s>n*), or both.

The lower bounds given are rather arbitrary and
depend on the circumstances. While n>103 may be
too large for many purposes, it is too small for future
large-scale simulations of great accuracy.

The reasons behind (5) are the following. All
translated sets are equivalent in the scanning
ensemble, and only first sets I(q, s) = {i;=1, ..., i,=s}
are of interest. The total number of first sets I(q, s) is
(s—2)!/(g—2)!(s—q)!, which means that q is Gaussian-
distributed, with a maximum at ¢ = s/2 and a width
s~12 In the stochastic region it may be assumed, at
least for maximum-length sequences (Compagner,
1991a), that N/(N+1) of these sets are uncorrelated
whereas the remaining fraction 1/(N+1) is correlated
(with C; = 1).

Therefore, the correlated sets of size s obey the
same Gaussian as all sets of size s, only the amplitude
is different. Of course, the deterministic production
rule leads to deviations from this stochastic behavior,
but for irregular high-order rules the stochastic region
is entered close to the maximum of the Gaussian,
which acts as a centre of attraction (the order of the
production rule only needs to be much larger then 1,
it doesnot need to have the optimal value n/2). Hence,
deviations in the form of correlated sets with rather
small g can be expected to become important only
when the total number 2° of sets of size s is so large
that the lowerg tail of the Gaussian has an
appreciable magnitude.

If recipes for well-tempered pseudorandom
sequences can be found, the main possibilities to
achieve optimal randomness are exhausted. Apart
from size and order there are no other general
parameters to characterize correlated sets. The main
difficulty lies in the notion of irregularity.

4 PRODUCTION RULES

It may seem that little progress is made by
reducing the randomness of a sequence to the
irregularity of a high-order production rule, but the
condition that is implied has an operational nature
and is rather weak. It is much weaker than the
requirement of maximum complexity for the whole
sequence, of which it is reminiscent and which is part
of the ingeneous definition of randomness in a
sequence proposed by Kolmogorov and, independenty,
by Chaitin (1987). However, that definition is based
on the very absence of any production rule and hence
is not constructive. In contrast, high-order production
rules that are both simple and irregular are easily
constructed.

A binary shiftregister with linear feedback
generates a maximum-length sequence when its
characteristic function is a primitive polynomial over
GF(2). The degree of the polynomial is one less than
the size of the first correlated set (which represents
the production rule) and the number of terms is equal
to the order of that set. Take for instance a two-bit
feedback shiftregister, characterized by a trinomial
R(n; k) = 1+2+x"* with 0<k<n, where k indicates
the additional feedback position. Starting from a seed
of n bits, the sequence is generated by iteration of the
productionrulea; ,, = a; ® a;; . The order and size
of the first correlated set {a a4 1o ,+n} areq =3
ands = n+1 and its parity product isb; b i bivn=
(b; b; +k) = 1. When the trinomial is primitive, the
sequence may be called pseudorandom because it has
the maximum length L = N—1 = 2"—1.

Many primitive trinomials are known. In particular
for degrees that are Mersenne exponents they are easy
to find. Zierler (1969) provided a list up to degree
n = 9689 of all primitive Mersenne trinomials. That
list was enlarged up to degree n = 44497 by Kurita
and Matsumoto (1991), and then up to n = 132049 by
Heringa et al. (1992). In all, 59 primitive Mersenne
trinomials are known, of which there are 19 for the 8
Mersenne exponents between 10° and 10, and 15 for
the first 9 Mersenne exponents above 10* (further
Mersenne exponents are unknown). Thus, a great
variety exists of two-bit feedback production rules that
generate pseudorandom sequences with a first
correlated set of large size.

However, two-bit feedback rules are not of high
order. The ill-tempered sequences they generate
contain third-order correlations of the smallest
possible size n+1, which explains why the shiftregister
method has often been mistrusted. Primitive
polynomials of high degree with many terms would
solve this problem, but already for moderate degrees
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these are difficult to find; they would also be difficult
to implement. An effective solution was found in
terms of reducible polynomials (Compagner, 1991).

When ¢ sequences, each generated by a primitive
Mersenne trinomial R(n; k;) of different degree n;
(increasing from n to n,), are added bitwise (mod 2),
a sequence is obtained with a period A that is the
product of the periods L; of the original sequences,
which are primes. The characteristic function of the
resulting sequence is a reducible polynomial, with the
primitive trinomials of the original sequences as
factors. The degree n of this reducible polynomial is
the sum of the degrees n; of the trinomials. Its
number of terms is ¢ = 3, at least when this value is
small compared with n/2, i.e. when the restriction to
GF(2) causes only few chance cancellations; for larger
values of 3/, the order g of the reducible polynomial
lags behind and usually levels off around n/2.

The length A of the resulting sequence is less than
the maximum length 2" —1 for a polynomial of degree
n, but the relative difference is negligible when the
smallest degree n; of the chosen trinomials is not too
small. Then, the sequence effectively has at least the
same randomness properties as a maximum-length
sequence, and is at least almost pseudorandom (Wang
and Compagner, 1992). Its production rule is of high
order and very irregular: the exponents n; (which are
primes) and k; that appear in the Mersenne trinomials
are entirely accidental. Iteration of the production
rule gives rise to further correlated sets of size s > n,
but initially their order approaches s/2, where the
Gaussian is maximal (see Section 3). Therefore, the
resulting sequence may also be called well-tempered.

Choose ¢ = 4 to 8 primitive trinomials R(n;; k;) of
different degrees from the table given by Heringa et
al. (1992), say with ny = 10? and n, > 10% while the
other degrees are scattered in between. The reducible
polynomial with 34 ~ 80 to 3% = 6000 terms that is
formed by their product is the characteristic function
of a well-tempered pseudorandom sequence with an
extremely large period (A> 10390 0), in which bit-
mixing takes place at many different length scales. An
efficient implementation of the reducible polynomial
is possible by means of a cascade (or, somewhat
misleading in the present context, a binary tree) in
which at each level pairs of sequences are ’exored’;
2 or 3 levels of the cascade suffice.

True, since only a small subsequence will ever be
used in any simulation, the question of the uniform
behavior of a well-tempered pseudorandom sequence
arises. Uncorrelated sets, including low-order ones,
may have a vanishing correlation coefficient when
averaged over the whole period, but the same doesnot
need to hold over a small subsequence. However, in

principle also this problem is solved by irregular high-
order production rules, which have a strong built-in
tendency back to the normality of the Gaussian
regime. Admittedly, this is not a proof. In fact,
accidental and transient correlations of low order and
rather small size can never be entirely excluded; their
probability can be made small, but not smaller than
befits the Gaussian regime.

In a few cases, the strategy outlined above has
been compared with numerical data. For values of n
below = 100 the figures of merit introduced by
Niederreiter and co-workers (Niederreiter, 1991) can
be determined. Generators based on reducible
polynomials of a certain degree with 3 primitive
trinomials as factors, were found to have about the
same figures of merit as optimal generators based on
a single primitive polynomial of the same degree with
relatively many terms (Wang and Compagner, 1992).
For larger values of n, figures of merit are difficult to
calculate and optimal polynomials are not available.

However, for n below = 103 many other numerical
tests of generators based on reducible polynomials are
possible. A suitable battery of tests for that purpose,
consisting of more than 20 different tests (not
counting variants) and including many well-known
ones, was developed by Berdnikov and Turtia (1992).
Preliminary results indicate that under these tests
reducible polynomials consisting of a few Mersenne
trinomials behave as expected.

5 CONCLUDING REMARKS

For large-scale Mome Carlo simulations values of
n above at least 10° are necessary, but for larger n
testing becomes increasingly difficult. A new type of
test, based on a local entropy that is defined in terms
of frequencies encountered in subsequences, will
perhaps turn out to be useful. Also, a more detailed
description, both theoretical and numerical, of the
quasi-stochastic process in which correlated sets are
generated by a production rule would be worthwile.

Random numbers are often generated by recipes in
which sequences of integers modulo m are used. An
analogy with a system of m-valued spins instead of the
Ising model may now serve as a guideline. In a
forthcoming paper (Compagner et al., 1992) it will be
shown that the definitions of Section 2 for the
correlation coefficients can be generalized by using
the m-th roots of the unity instead of the parities. It
turns out that the general correlation coefficients,
which are complex quantities lying on or in the unit
circle, still obey conservation laws like (3) and (4),
and that again order and size can be introduced as the
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characteristic parameters of correlated sets.

In fact, the general correlation coefficients are just
a new interpretation of the characteristic function of
a discrete multivariate distribution, where the
elements of the sequence are the stochastic variables.
A close relation exists also with the Fourier analysis
of random sequencies carried out by Coveyou and
MacPherson (1967) and with the spectral test that
they introduced. It seems that the problem has turned
full circle, to the next sheet of a Riemann surface.

The connection with the spectral test was noted in
an interesting paper by O.E.Percus and J.K.Percus
(1992), in which the correlation properties of
sequences produced by two-bit feedback shiftregisters
are compared with those of sequences generated by
the linear-congruence method. Similar studies for
sequences generated with the lagged-Fibonacci
method would be very useful.

Most methods generate maximum-lengthsequences
or good approximations thereof, which may be called
pseudorandom. Whether the sequences are well-
tempered remains to be seen. Probably, more terms
have to be included in the linear-congruence rule, or
multiple lags in the lagged-Fibonacci method.

A three-level cascade in which the bits generated
by 8 widely different Mersenne trinomials are added
(mod 2) is one of the best random-number generators
available. A great variety of these trinomials exists,
and the number-theoretical scatter in their exponents
is excessive. The effective production rule is very
irregular, of large order and of high degree. Such a
cascade can be implemented in a single VLSI chip,
the existence of which would allow Monte Carlo
simulations that are at par with the machines used.
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