Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

USING MOGUL™ 2.0 TO PRODUCE SIMULATION MODELS AND
ANIMATIONS OF COMPLEX COMPUTER SYSTEMS AND NETWORKS

Peter L. Haigh

High Performance Software, Inc.
4288 Upham Road
Dayton, OH 45429, U.S.A.

ABSTRACT

Simulation techniques are increasingly being applied to
computer system and network design and analysis. The
use of animation is also increasing as an integral part of
the simulation environment. Animation greatly enhances
model verification, system understanding, and results
presentation. MOGUL™ is a powerful software package
for simulating computer systems and communication
networks. It supports graphical model building, interac-
tive statistics perusal, and animation. MOGUL com-
bines the power of Wolverine Software’s GPSS/H™ and
Proof Animation™ with its own repertoire of processor,
peripheral device, and communication network models to
provide an integrated environment for system and
network modeling.

1 INTRODUCTION

MOGUL (MOdel Generator with User Lead-through) is
a package for rapid generation of simulation models of
computer sysiems and computer communication net-
works. It includes REGAL™ (REport Generator And
Lister), a program for rapid examination and display of
simulation results using a display screen, rather than a
line printer. The reader should consult Haigh (1991) or
High Performance Software for a more detailed descrip-
tion of the modeling capabilities of the MOGUL pack-
age.

This tutorial will begin with a review of the basic
model building and analysis capabilities of MOGUL and
REGAL. It will then highlight the use of animation in
model building, model verification, and results analysis.

2 MOGUL OVERVIEW

MOGUL allows the modeler to take a high level view of
the system to be modeled, build the model from the top
down, and add detail as information becomes available.
After the user selects the objects to be simulated and
describes the activity flow in the model, MOGUL gener-
ates a complete simulation model in the GPSS/H simula-
tion language.

400

2.1 Objects

The modeler creates the desired processors, com-
munication links, and peripheral devices in his model by
selecting from the repertoire of object types provided.
The repertoire of object types is open ended, and may be
expanded by the user. Objects are described by sets of
parametric data in a definitions text file. Each type (or
class, in OOP terminology) of processor, link, and
peripheral that the modeler may select is listed in the
definitions file. The attributes of cach object type are
defined using a pre-defined syntax. The GPSS code to
simulate all object types is included with the MOGUL
package.

Protocols. Simulation code to model the major link
level protocols is also provided. These include CSMA/-
CD, SDLC/HDLC/X.25 family, various modes of
BiSync, Token Ring, token bus, FDDI, and various
Async protocols. Using the activity path language and
these protocols, any TCP/IP or other type network may
be simulated. If new link level protocols are needed,
new GPSS code may be added to simulate them.

2.2 Activity Paths

Simulation activity flow is specified using a high level
language and an easy to use interactive editor, which
comes with comprehensive on-line help. The modeler
creates a series of activity paths, or process descriptions,
using statements from the language. The actions are
such things as: send an information frame across a com-
munication link, use a processor for a specified time (10
simulate program execution), read or write to a pen-
pheral device, form a queue, delay, perform arithmetic
and control operations, test conditions, stop the simula-
tion, etc. Activity paths are referred to as software
execution graphs in Smith (1990).

2.3 Messages

When the model is executed, entities called messages
flow along the activity paths and cause the activity
specified in each statement to occur. Messages may be

Mogul 2.0 401

created automatically at the beginning of any path, using
a Poisson arrival process and a user specified mean inter-
arrival time. Alternatively, a message may be spawned
by another message. A message may do such things as
branch to another activity path, skip statements, call an
activity path as a subroutine, spawn other messages,
branch to user written code, and terminate itself.

3 ACTIVITY PATH LANGUAGE

All statement types in the activity path language are
defined in a language definition text file. Each statement
type is implemented as a GPSS routine. The label of the
routine in the simulation code is the same as the state-
ment keyword. To add a new statement type "XXX' to
the language, all that is necessary is to add a routine
labeled "XXX' and edit the language definition file to
include the "XXX’ statement definition.

3.1 System activity statements.

The statement: PRO 3

causes the message executing the statement to seize the
CPU for 3 milliseconds to simulate program execution,
There is the notion that a message is resident in some
particular processor - the 'current’” CPU. That is the
CPU referred to by the PRO statement. MOGUL keeps
track of a message’s whereabouts (in a CPU, on a com-
munication link, outside the system hardware, etc.).

A single PRO statement, accompanied by the appro-
priatc menu selections of processor type and message
arrival rate, forms a complete single server queuing
model. MOGUL automatically creates and manages a
queue associated with each resource (in this case the
processor referenced by the message executing the PRO
statement). Messages of higher priority arriving at a
PRO statement will preempt a message of lower priority
currently using the referenced CPU.

To perform 1/O to a peripheral device, the statement:

IOP 3 RND 512

simulates a random access of device number 3 and a
transfer of 512 bytes to or from main memory. Again,
the CPU in which the message is resident is relevant.
To send a communication message across a link:
XMT 7 2
transmits a communication message from the current
CPU across link number 7 to CPU number 2.
The above examples illustrate a few of the system
activity statement types.

3.2 Flow control statements.

The following are examples of flow control statements:

BRNCH 3 750 Branch to path 3 75% of the time
SPN 71000 Spawn a msg on path 7 100% of time

SUBR 5 Call path 5 as a subroutine

TRM Terminate this msg

SEND 1 512 Split msg into 512 byte packets,
key=1

RCV 1 Receive & assemble packets with
key=1

The SEND and RCV statements allow the modeler to
simulate splitting a communication message into packets
which may follow different routes to their common
destination. The RCV statement automatically assembles
the packets and rebuilds the original message at the
destination, noting any packets that are late or fail to
arrive,

3.3 Arithmetic statements.

There are 100 general purpose registers available for
storing and manipulating variables. The arithmetic state-
meats allow the modeler to load, operate on, and test the
contents of these registers. For example:

ADD 1 3 SKG Add register 1 to register 3,
skip if result > 0
DEC 5 1 SKE Decrement register 5 by 1,

skip if result = 0
3.4 Timing statements.

e staicments: TIMEO (Time zero)

and TMTBL (Time table)
are used to measure the trangit time of a message from
one point in the model to another. TIMEO sets the
elapsed time of the message to 0. TMTBL places the
elapsed time of the message into a table associated with

the activity path.
3.5 Threads

A thread is a portion of an activity path which represents
a resource. For example, the statemeats
BTHRD 5

and ETHRD 5§
mark the beginning and end of thread number 5. The
thread may represent a process, a computer program, or,
in general, the use of a resource by the message. The
user may specify how many messages may enter the
thread. MOGUL automatically maintains a queue (a
GPSS user chain) for messages attempting to enter a full
thread.

3.6 Other statement types.

These have been only a few examples of statements from
the activity path language. There are currently 41 state-
ment types available. Users, of course, may add any
number of statement types for their own special pur-

402

Haigh

LISTING FILE: systemd4.l1= STATISTICS FILE: systemd.rpt

TIME : 1800000.000
% MSGS1 Mear: 2509.19 Stdlev: 1611.71 CLOCK
10 1.8e+06
MEDIAN
B 2212,
ENTRIES
* &34
b *
*
*
* %
4 * % OVERFLOW
- % * 23
*4 LT SR
* % L T I I OVERFLOW
) ** K ORREEEREE K XRE RER AVG VAL
KR EH CERERR AL AARCERERREN KRR 6641 .
H L ey s e R e S S 2 S * % *
HEtaaet 3 TS T B e L AR T 2 S22 2T EE SRS LSS 22 222
1500 3000 4500 &LO00

Figure 1: A REGAL Produced Display of Table Data

poses.
4 RUNNING & EVALUATING THE MODEL

After the modeler has defined the objects in the model
and built the activity paths describing the dynamic
activity, MOGUL will generate the source code for a
complete GPSS simulation model. The GPSS/H com-
piler is then used to run the model.

4.1 Checking Statistics with REGAL

REGAL can be used to quickly inspect the statistics from
a simulation run. REGAL parses the GPSS listing file
and builds a set of structures containing the pertinent
statistics. These may then be viewed using menu
selection. The modeler may see charts of resource
utilizations, queue statistics, and various other model
variables (v.i.z. GPSS savevalues). Table data may be
seen in graph form, which may be displayed on any 80
by 25 character oriented CRT, as shown in Figure 1,

Snapshots. REGAL can also display snapshot
output. A snapshot is a statistical report printed to the
listing file before the end of the simulation. The user
may select the specific report to view, or may produce
a graph of a specific model variable taken from a series
of snapshots.

Multiple Runs. If the modeler wishes 10 view the
same model variable across a series of simulation runs,
REGAL can pick a statistical value from a series of
output files and produce a graph of that variable as a
function of the simulation run number.

S ANIMATION

Recently there has been a proliferation of commercially
available animation software. MOGUL uses an inexpen-
sive, but extremely powerful, animator called Proof
Animation, available from Wolverine Software Corpora-
tion. An advantage of this approach is that the animator
may be used with applications other than MOGUL and
GPSS/H. Furthermore, if the user does not wish to use
animation, the animator need not be purchased.

5.1 Why Use Animation?

It can be said that animation has at least the following
purposes when used in conjunction with simulation mo-
deling:

1. Presenting results to decision makers

2. Verifying & debugging the model

3. Understanding the modeled system

The relative importance of these uses is usually presented
as the order listed above. Those who use animation,
however, (the author among them) will usually rate these
uses in the reverse order. Understanding the modeled
system is by far the most important beaefit. The mo-
deler, as well as anyone needing to grasp the workings
of the subject system, benefits beyond measure by
viewing an animation of the simulated system.

Seeing is Believing. Looking at a print-out of
statistics from a simulation run, one does not see when
a queue reached its maximum length or when the longest
response times occurred. The time relationship of
various statistics end variable values can not be ascer-

Mogul 2.0 403

tained from a flat statistical summary. Watching an
animation, however, dynamic relationships among the
resources and system activity become immediately
apparent and lead the modeler to experiment with the
system design to improve the system’s performance.

$.2 Graphical Model Building

The animation layout for a MOGUL simulation model
may serve as input to the model creation process. This
allows the modeler to conceive of the picture of the
system he or she wishes to observe, create it graphically
using Proof Animation, then read it into MOGUL.
MOGUL is then used to complete the model definition
(assign CPU types, create activity paths, etc.). When
the simulation-is run, a trace file is created which drives
the graphical layout created by the modeler. Figures 2
and 3 show examples of MOGUL driven animations.

Creating System Objects. The MOGUL package
provides a basic set of classes from which to select
objects. There are graphic shapes to represent CPUs,
I/O devices, and various types of communication links.
Users can create additional shapes, if desired, to better
represent specific network geometries, peculiar devices,
etc. A simple naming convention lets MOGUL know
what type each object is. For example, peripheral
devices must be named DEV1, DEVS, etc.

When the simulation is run, MOGUL outputs the
animation commands to set the color of an object GREEN,
if it is idle, and RED, if it is in use. Also, any disk

objects will rotate at their proper rotational speed.

Queucs. Bvery processor, peripheral device, com-
munication link, and thread has a queue associated with
it. To display a queue, the modeler creates a queue
object, places it where desired in the diagram, and gives
it a name. As with system objects, the name given to it
tells MOGUL which queue should be displayed. The
name TQ3, for example, specifies the queue (user chain)
for thread number 3.

To implement a queue display, MOGUL creates ten
queue entry elements, which are stacked one above the
other in the layout, with some space between them.
When the simulation is run, the gueue entry elements are
changed from background color (invisible) to YELLOW as
messages join the queue. If the queue size gets greater
than ten, the color RED is used, with each element
representing ten queue entries. This allows a viewer of
the animation to tell visually how many objects are in
the queue (up to a queue size of 100).

Statistics. Various statistics can be displayed. The
average utilizations of processors, peripheral devices,
communication links, and threads, and the average
values of tables may be displayed. To display the
average utilization of peripheral device 3, for example,
the modeler creates a message named DVUTL3. Then,
during the simulation, MOGUL periodically writes the
average utilization of device 3 to the spot where the
message is positioned.

TLawe=? GU171.43

Spaed s EHBE

QUEUES

Fraster SStower Pauce Gu Wiew o Eile o Bode

i REMOTE

#% 10LE
W B8usy
UTiL 2 0.351
Q3 Q2 Q1 2400 BPS
uTIL = o.o84
—
—— g
—] -
IS MR RS T
APPLICATION 015K

uTIiL Z 0.004
WORKSTATIONS

ELAPSED TIME IN SECONDS: 59

CPU
RESQURCE LEGEND

GUEUE

WORKSTRTION LEGENQO
B oLe

Ml OPERATOR ENTERING
% RMWAITING RESPONSE

Figure 2: Animation Display - Transaction Processing System

404

Haigh

U 18UEY .60 Speed THHE -

MESSAGE PACKETS
ORIGINATE HERE

-
-
|

Faster “Stawer Pause Go Urew o File - Bode

COMMUNICATION NETWORK EXAMPLE
Routing Algorithm # 1

CPU 4

MESSAGE PACKETS
TERMINATE HERE

PACKET TRANSIT TIME = 3146.874
ELAPSED TIME IN SECONDS: l2

Figure 3: Animation Display - Network

5.3 Verilying & Debugging the Moded

Using Proof Animation, the modeler can observe each
state change in the system. In the DEBUG mode, the
animation may be single stepped by event, to observe
each event, or by time, to observe all changes at each
clock update. This procedure is much easier than the
process of setting breakpoints, checking variable values,
and single stepping used with a traditional debugger.

6 CONCLUSION

The MOGUL package, combined with GPSS/H and
Proof Animation, provides a powerful environment for
simulation modeling of computer systems and networks.
The environment supports graphical model building,
high level model building with any desired level of
added detail, and animation.

There is no theoretical limit to the size of a MOGUL
generated model or its animation. The only practical
limit is the amount of memory available in the hosting
computer. Both Unix and DOS environments are sup-
ported. Model building, simulation, and animation may
be performed on differeat computer systems, if neces-
sary. This flexibility affords a solution for almost any
computing situation.

REFERENCES
Brunner, D. T, N. J. Earle, J. O. Henriksen. 1991,

Proof Animation: the general purpose animator. In
Proceedings of the 1991 Winter Simulation Con-
ference, ed. B, L. Nelson, W. D, Kelton, and G. M.
Clark, 90-94. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Haigh, P. L. 1991. Simulation of computer systems and
networks with MOGUL and REGAL. In Proceedings
of the 1991 Winter Simulation Conference, ed. B. L.
Nelson, W. D. Kelton, and G. M. Clark, 86-89. Insti-
tute of Electrical and Electronics Engineers, Pis-
cataway, New Jersey.

Henriksen, J. O. and R. C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Wolverine Software
Corporation, Annandale, Virginia.

Law, A. M. and W. D. Kelton. 1991. Simulation Mo-
deling & Analysis. 2nd ed. New York: McGraw-Hill.

Smith, C. U, 1990. Performance Engineering of Sofi-
ware Systems. Reading, Massachusetts: Addison-
Wesley.

AUTHOR BIOGRAPHY

PETER L. HAIGH is founder and president of High
Performance Software, Inc. He has authored papers on
simulation and computer system performance topics. He
is a member of ACM, IEERE, and SCS; has chaired the
Greater Dayton ACM chapter; and was general chairman
of the 1988 Winter Simulation Conference,

