Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

MODELING PRIORITY QUEUES WITH ENTITY LISTS:
A SIGMA TUTORIAL

Lee W. Schruben

School of Operations Research and Industrial Engineering
Cornell University, Ithaca, New York 14853

and

SEMATECH, Austin, Texas 78741-6499 U.S.A.

ABSTRACT

The use of ranked entity lists in SIGMA 1is illustrated in
this paper. Previous Winter Simulation Conference
tutonals 1llustrated the basic concepts of event graph
modeling and the use of graph parameters to model
very large systems. A complete introduction to the
second release of the SIGMA graphical simulation
modeling environment can be found in Schruben, 1992.
After briefly introducing the single basic object for
building event graph simulation models, an example is
developed that illustrates the use of SIGMA entity lists.
The example is of a time-constrained serial production
process. Time-constrained sequences are very common
in semiconductor manufacturing.

1. EVENT GRAPH MODELING

Event graphs can be used to build models of any
discrete event system using just a single graphical
object. This basic model building block consists of a
directed edge (arrow) connecting a pair of vertices
(balls). The vertices represent the changes in the values
of system state variables that are associated with the
occurrence of an elementary system event (such as the
arrival of a customer to a queueing system). The edge
between two event vertices represents the conditions
under which one event might cause the occurrence of
the other event as well as the time interval between the
two events.

Associated with each event vertex is a set of state
variable changes that take place whenever the
corresponding event occurs. Event graphs are
fundamentally different from the state transition
diagrams commonly used to represent automata and
Markov processes. The vertices in conventional state
diagrams each represent a different value of the state;
here vertices represent changes in state variables.
Whereas the state diagram for a classical M/M/1 queue
requires an infinite graph, the event graph for this

380

system 1s not only finite but can actually be reduced to
a single vertex!

Associated with each edge is a set of conditions that
must be true in order for one event to schedule another.
Also associated with each edge will be a delay time
equal to the interval unti]l the scheduled event occurs.
The graphical representation of the basic modeling
object is as follows;

(1)
C
J

This edge 1s interpreted as follows:

if condition (i) is true at the instant event A occurs,
then event B will be scheduled to occur t minutes later.

If the condition is not true, nothing will happen, and
the edge can be ignored until the next time event A
occurs. You can think of an edge as nonexistent unless
its edge condition is true. If the condition for an edge is
always true (denoted as 1==1), the condition is left
off the graph. We will call edges with conditions that
are always true unconditional edges. Zero time delays
for edges are not shown on the graph. By defining
behaviors for different instances of the basic event
graph object, different types of events can be modeled
that can be linked into a complete system event graph
model.

While learning to read event graphs, it is a good idea
to use the edge interpretation above as a template for
describing each edge. Once the edges in the graph are
correct, the state changes associated with each vertex
are typically easy to check.

A key enrichment to event graphs is the concept of
parameterized vertices and edge attributes that permit a
basic event graph to be used to represent different

SIGMA

instances of similar subsystems. These graphs can be
hierarchically linked into a model of a larger system.
For example: an event graph of a single generic
machine cell can be parameterized to represent
different types of cells which can be linked in a larger
graph that simulates a complete factory. Thus a generic
factory simulator can be developed to any degree of
complexity.

SIGMA is a point-and-click program for easily
constructing event graph models. Other event graph
enrichments included in the second release of SIGMA
are interactive debugging, graphical output analysis,
event canceling edges, automatic code generation in C,
Pascal, or FORTRAN (SLAM and SIMAN) source
code, and automatic generation of an English system
description for model documentation and verification.

2. A SIMPLE EXAMPLE

A simple event graph is the model for a single-server
queue. The state variable S will represent the status of
the server (idle=1, busy=0) and Q the number of
customers waiting in line. The times between
successive arrivals (probably random) are denoted by t,
and the time required for service (perhaps also random)
is denoted by t;. When values of t, or tg are actually
needed during a simulation run, they might be read
from a data file or generated by random variable
functions included in SIGMA. An event graph model
for this system is as follows:

(@-~0)

[\o PR

@ 5 @ @
L
s

15=14 1Q=Q+ 1t 15=0.0=Q-1 js=11
State changes associated with each elementary event are
enclosed in braces below the respective vertices. Edge
conditions appear in parentheses. A concise description
of the system is obtained by simply describing each
edge in the graph. In the following system description
there is a 1 to 1 relationship between edges in the graph
and sentences. (A useful exercise is to identify the edge
in the event graph corresponding to each of the
sentences in the following system description.)

At the start of the simulation RUN, the first customer
will ENTER the system. Successive customers ENTER
the system every t, minutes. If an ENTERing customer
finds the server available (S> 0), they START service
immediately. Customers who START service can
LEAVE after a service delay of tg minutes. Whenever a

381

customer LEAVEs and the queue is not empty (Q > 0),
the server will START with the next customer.

This graph represents a completely defined simulation
model. To run this model, only the starting and ending
conditions for the run need to be specified.

If you now re-read the above paragraph without
looking at the graph, you will see that it is a concise
description of the behavior of the queueing system.
With practice, a system description can be read easily
from the edges of a simulation event graph. This is an
excellent way to communicate the essential features of a
simulation model and a good first step in model
validation. With experience in reading event graphs, it
is becomes easier to detect logic errors in a model.

It is worth noting that while there is no universally
accepted definition of an "event", the customary notion
of a system event will typically correspond to a
subgraph of event vertices connected by edges with
zero delay. As mentioned earlier, if the arrival and
service times for the above queueing system are
exponentially distributed, the event graph can be
collapsed into a single vertex representing the departure
of a customer (i.e., representing the embedded Markov
chain at customer departure times).

The ability to identify the events in a discrete event
system is an important skill, one that takes practice to
acquire. Initially, you might use the following simple
steps as a guide to identify system events:

1. Identify the entities in your system.

2. Identify the dynamic attributes of each
entity.

3. Identify the circumstances that might cause
attribute values to change...these will be
the events.

Once the elementary system events are identified, the
process for constructing an event graph is rather
straightforward. The rest of this paper will focus on the
entity list tools included in the second release of
SIGMA, followed by an example.

3. ENTITY LIST MANAGEMENT

Ranked queues occur whenever the order of service
might differ from the order of customer arrival.
SIGMA has two functions that make it very easy to
model priority ranked queues and lists: The PUT
function puts entries onto lists and the GET function
gets entries off of lists. Two arrays, ENT[] and RNK([],
are used by the PUT and GET functions. We will
describe the purpose of these two arrays first.

Attributes of individual transient entities (customers
in a queueing system) can be assigned to the elements
in the array ENT[]. For example, ENT[0] might be the
customer arrival time, ENT[1] the class of service, and
ENT[2] the amount of product to be purchased. The
state change vector

ENT[0]=CLK., ENT[1]=CLASS,
ENT[2]=DEMAND

might model the relevant attributes of a customer. The
ENT(] array is used exclusively as a temporary data
buffer for customers joining ranked queues using the
PUT{} and GET{} functions described below.

The array RNK[LINE] contains the index of the
element of the ENT[] array that is to be used in
determining a customer's position in the line designated
by the integer, LINE.

The PUT{OPTION;LIST} function, places the current
contents of the ENT[] array in the LIST. The elements
of the temporary buffer, ENT, are typically the values
of attributes of customers that are joining the queue.
LIST is a number, variable, or function that identifies
the queue to be joined. PUT{} OPTIONS include:

1 or FIF (first-is-first) inserts the new entity after the
last record on the LIST.

2 or LIF (last-is-first) inserts the new entity before the
first record on the LIST.

3 or INC (increasing) the LIST is ranked by increasing
values of ENT[X], where X=RNK[LIST] 1is the
ranking entity attribute.

4 or DEC (decreasing) the LIST is ranked by
decreasing values of ENT[X], where X=RNK[LIST] is
the ranking entity attribute.

5 or EVN (even) when the values of ENT[0] for two
entities are even, the tie is broken by increasing values
of ENT[2], with remaining ties broken FIFO.

The GET{OPTION;LIST} function removes a record
from the specified LIST according to the OPTION
chosen and places its contents in the ENT[] array.
GET{} OPTIONSs include:

1 or FST (first) removes the first entry of LIST.

2 or LST (last) removes the last entry of LIST.

3 or KEY (key) removes the first entry of LIST (if any)
where values of ENT[0] match.

Schruben

Both PUT{} and GET{} return 1 if successful and 0
otherwise. If these functions are used in a state change,
they should appear only on the right-hand side of an
equation, such as

QUEUE([N] = QUEUE[N]+PUT{FIF;N}.

Since the PUT function will return a value of 1, this
state change will increase QUEUE[N] (the length of the
Nth queue) by 1 when the customer with attributes
currently in the ENT[] array is put into this queue. The
customer can be removed later (with attributes placed in
ENTI[]) with the state change,

QUEUE([N] = QUEUE[N]-GET{FST;N}.

Again the GET function will return a value of 1 if list
N is not empty; thus, QUEUE[N] will be decreased by
1 by the above state change.

4. TIME-CONSTRAINED PROCESSING

The SIGMA ranked list functions, PUT and GET,
are illustrated with an example of time-constrained
processing. Consider a heat and press sequence where
parts arrive every t, minutes and must be heated in a
furnace (which takes t; minutes) before being pressed
by a mold press machine (taking minutes). The
interarrival times and both processing steps are
somewhat random. The sequence is time-constrained
because there is a maximum cooling time limit of t.
after a part is heated during which the pressing step
must start. If a part waits longer than t. minutes after
being heated before pressing starts, it must be returned
to the furnace for reheating. We will identify each part
waiting for the mold press with an ID number that is
sequentially assigned after it is finished being heated. F
and P will denote the status of the furnace and press
respectively (1=idle, 0=busy). QF and QP will denote
the number of parts in the queue waiting for the furnace
and press. See Figure 1 for an event graph model of
this system.

The graph in Figure 1 is the complete simulation
model. It might seem rather complicated at first glance;
however, one of the most appealing features of event
graph modeling is that you do not have to look at the
entire model at once. The logic in each vertex can be
verified in isolation. The graph naturally decomposes
into vertices and sets of exiting edges which can be
examined separately; the graph ties everything together.
We read the model in Figure 1 by examining one vertex
at a time along with its set of exiting edges; ignore the
rest of the graph as you read each of the following

SIGMA

paragraphs describing how each vertex in this model
works.

The RUN vertex makes the furnace and press initially
idle and requests a value for the cooling limit, t.. The
first part is then scheduled to ENTER the system.

{F=1P=1} 1QF=QF+1{

1QP=QP-1.

QF=QF-1 o QF=QF+1{

(GETJKEY.1{)

{F=1.1D=ID+1
ENT[0)=1D.
QP=QP+PUTIFIF.1H}

Figure 1: Event Graph of a Time-Constrained Sequence

When a new part ENTERSs the queue for the furnace,
QF is incremented. If the furnace is idle (F >0) the part
can be HEATed. The ENTER vertex also schedules
successive new part arrivals.

When HEATIng starts, the furnace becomes busy
(F=0) and the number of parts waiting for the furnace,
QF, is decremented. After a heating time of tj, the part
is READY for pressing.

When a part is READY for the mold press, the
furnace is unloaded (F=1), an ID number is assigned
to the part and it is PUT into the queue for the mold
machine, QP. If there are more parts waiting for the
furnace, the next part can start to be HEATed. If the
mold press is idle (P>0), then the PRESS operation
can begin immediately. Cooling starts as soon as the
part is READY for the press. If part ID does not start
its PRESS operation before t. it will become COLD
and need to be sent back to the furnace.

When the COLD event occurs, the cooling limit for
part ID has been reached. The condition on the edge
from COLD to REDO checks if the cold part is still
waiting to be pressed using the GET function with the
KEY option. If this part is not still waiting in the mold
press queue (line 1), then it must have already started
its pressing step. In this case, the GET function will
not find a match and returns a value of 0 making the
edge condition false and the REDO event will not be
scheduled. Note that the ID value of the part is passed

383

from the READY vertex to the COLD vertex as an
edge attribute (see Schruben 1991,92). This ID value is
placed in ENT[O] to be used as the match KEY in the
GET function to see if that particular part is still
waiting for the mold press when it became cold.

If the cold part is still in the queue for the mold press
(that is, part ID is still waiting in list 1), then it is
removed from the press queue (QP=QP-1) in the
REDO vertex and placed back in the queue for the
furnace (QF=QF+1). If the furnace is idle then
HEATing can begin.

The PRESS operation will GET a part out of the
queue (if the COLD event has not already removed it)
and make the press busy. After a pressing time of t, the
part is DONE. If more parts are in the mold machine
queue (QP>0) the next part waiting (that has not
cooled off) can begin its PRESS step.

5. CONCLUDING REMARKS

In SIGMA, event graphs are drawn with a mouse.
The model can then be interactively tested using
powerful debugging aids such as the ASK function
(Schruben, 1992). The model can also be interactively
executed or translated into English, C, Pascal, or
FORTRAN (SLAM or SIMAN). The C code generated
by SIGMA for this simulation ran considerable faster
on a PC under DOS than did models of this system
developed in other languages. The full C source code is
included so the simulation can easily be ported to other
computers.

Event graphs can also be included in a larger model
using the "append" command in SIGMA. In this way a
large model can be developed by connecting its
component sub graphs. This facilitates team model
development. Even though all variables are global,
only data is passed between subgraph objects in the
form of event scheduling messages.

A completely new version of SIGMA for Windows is
currently in beta test. The PC version of SIGMA
running under DOS is available from Scientific Press,
651 Gateway Blvd., Suite 1100, South San Francisco,
CA, 94080-7914 or by calling (415) 583-8840.

ACKNOWLEDGMENTS

I appreciate the opportunity to join SEMATECH
during 1992 and have benefited from many
enlightening discussions with the staff of the Modeling
and Statistical Methods Group. In particular, the
insights of Dr. John Fowler (who suggested the
example in this paper) have been valuable. Most of all,
I appreciate the students in the my simulation courses
who have contributed to the development of SIGMA

384 Schruben

over the past nine years and The Scientific Press for
helping me sharpen the software and manual. The
previous version of the SIGMA program was selected
last year as one of the all-time best 101 educational
computing applications by EDUCOM. Thank you.

REFERENCES

Schruben, Lee, 1990-91, Sigma Tutonals, Proceedings
of the Winter Simulation Conference.

Schruben, Lee 1992, Event Graph Modeling Using
SIGMA, (2nd release), The Scientific Press, S. San
Francisco, CA.

AUTHOR BIOGRAPHY

Lee Schruben, a Professor in the School of Operations
Research and Industrial Engineering at Cornell
University, is currently a Visiting Distinguished
Professor at SEMATECH, the semiconductor
manufacturing and technology research consortium
located in Austin Texas.

