Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. (.. Crain, and J. R. Wilson

PROOF ANIMATION: THE GENERAL PURPOSE ANIMATOR

James O. Henriksen
Nancy J. Earle

Wolverine Software Corporation
4115 Annandalc Road
Annandale, Virginia 22003

ABSTRACT

Proof Animation™ is a family of general-purpose, file-
driven, vector-based, postprocessing animation software
products which runs on readily available, inexpensive PC
hardware and includes CAD-like drawing tools and a
unique presentation subsystem. Proof Animation
features an open architecture, allowing it to serve as an
animation "back end" for models written in a wide
variety of simulation languages. Proof Animation's
mode-based, menu-driven user interface is easy to learn
and use, and its superior run-time performance assures
smooth, realistic motion in animations with many
moving objects.

1 INTRODUCTION

Animation is an extremely powerful tool in all stages of
a simulation project. However, the capabilities of
animation software which are most important to success
differ considerably from stage to stagc.

At the outset of a simulation projcct, the most
important attribute of animation softwarc is the
feasibility of its use. Will the animation software work
well with the modeling software to be used? Will its
demonstrated capabilitics to do simple animations be
sufficient to handle a full-scale, industrial-strength
project? Is the software affordable?

During the development of a simulation/animation,
ease-of-use issucs are of paramount importance. How
easy is it to draw (or import) the animation layout?
Does the animation software include constructs which
lessen the modeling burden? How easy is it to dcfine and
modify the characteristics of moving objects? How casy
is it to "home in" (in time and space) on systcm
glitches, to determine whether they represent legitimate
quirks of system opcration or modeling errors?

As one approaches the end of a project, issues of
portability and effectiveness of presentations become

366

very important. Can I take an animation down the hall
to my boss's office, or take it to a customer's site, or
docs it require special hardware that they don't have? Can
I assemble a collection of slides and animation clips to
summarize the results of the simulation/animation
study?

The Proof Animation family of software products
provides favorable answers to all the questions posed
above. In the sections which follow, we describe the
family of products, discuss their underlying design
philosophy, describe their organization, and give an
overview of how they are used.

2 THE PROOF ANIMATION FAMILY

The following products comprise the Proof Animation
family:

* PA The basic animator. Requires a 286
or better processor, a math
coprocessor, and an EGA/VGA video
card. DOS 640K memory limitations

apply.
- SPA The student version of Proof
Animation. Included with the Using
Proof Animation textbook (Brunner
1992). Size and playing time
limitations are imposed; otherwise
identical to PA.
- PP Proof Professional. Requires a 386 or
better CPU. Uses 32-bit DOS-
extender technology to break the
640K barrier. 1024 X 768 high-
resolution version included at no
additional cost.

Proof Animation 367

* PADEMO The Demo version of PA. Can only
be used to run animations prepared
under a licensed copy of PA
containing a "Demo-Maker” add-on.
Copies of PADEMO can be
reproduced and distributed free of
charge.

« PPDEMO The Demo version of PP.

+ DXF2PA An add-on utility for converting
industry-standard .DXF CAD files
into Proof Animation layout (.LAY)
files.

+ PA2DXF An add-on utility for converting Proof
Animation layout files into .DXF
files.

3 DESIGN PHILOSOPHY
3.1 MS-DOS, PC Platform

Proof Animation was designed to use widely available
hardware, in order to maximize portability. PA, the
basic version of Proof Animation, rcquires only a 286 or
better CPU, a math coprocessor, and an EGA/VGA-
compatible video card. Configurations of this type are
very widely available. High-end 486-based PCs, ideal
platforms for running Proof Professional (PP), are
available for under $2,000. The choice of MS-DOS as a
host operating system was made bccause of its enormous
installed base and its simplicity of operation (no multi-
tasking). Proof Animation (PA) can also be launched as
a full-screen application under both Windows 3.1 and
0S/2 Release 2.

3.2 General-Purpose Orientation

Proof Animation was designed to be general-purpose in
two ways. First, it was designed to be independent of
any particular simulation language. While for obvious
reasons, we'd prefer that you use Wolverine GPSS/H as
your simulation language, we are pleased to have
provided animation software to users who develop
models in SIMAN, SIMSCRIPT, and SLAM.
Animation software from most vendors is tightly
coupled to their simulation software. The advantage
most often touted for this approach is that developing
animations is made easier by the animator's direct,
automatic access to the events which occur in a
simulation. This is true for small, simple animations,
in which there is a one-to-onc relationship between
simulation events and animation events, e.g., initiating

or stopping the motion of an object. In more complex
simulations, however, the relationships between these
two kinds of events are too complicated to fall within the
scope of simple, built-in rules. "Programmable” logic is
needed to handle these situations.

The second way in which Proof Animation is
gencral purpose is in the design of its command set.
Commands such as CREATE, DESTROY, PLACE,
MOVE, and SET COLOR are easily learned and easily
uscd. They provide exactly the kind of flexibility
necessary o implement programmable animation logic.

Purveyors of tightly coupled simulation/animation
software would have you believe that their approach is
the only way to add animation to a simulation. It's not.
A mix-and-match strategy for acquisition of software
allows you to select the functionality you want, at prices
you are willing to pay. Sole sources of any goods or
services tend to be expensive.

3.3 ASCII File-Driven Architecture

Two input files are required for every animation run
under Proof: a layout (LAY) file, and a trace (. ATF) file.
The layout file describes the geometry of the fixed
background over which objects move, and it provides
definitions for such things as shapes and colors of
objects, and paths along which objects move. The trace
file contains a time-ordered sequence of commands such
as CREATE, DESTROY, PLACE, MOVE, etc. It is
the life's blood of an animation.

Trace files are free-format, and the syntax of trace
file commands is designed for ease of generation. Any
language which can produce formatted ASCII output can
casily write a trace file. In SIMAN, the WRITE
statement is used; in SIMSCRIPT, the PRINT statement
is used; and in SLAM, FORTRAN-coded event routines
arc used. In Wolverine GPSS/H, PUTPIC and
BPUTPIC are especially well suited for writing trace file
commands.

Ordinarily, layout files are produced at least in part
by using Proof Animation's CAD-like drawing tools;
however, because we publish the .LAY file command set
specifications, it is possible to write programs to
generate layout files. For example, some of our users
have written front ends which query a user for system
design parameters and use these values to design a
physical layout which is written into a .LAY file.

3.4 Importing .DXF and .PCX Files

Sometimes a CAD drawing already exists for a system
which is to be animated. Directly using the CAD
drawing offers two advantages: (1) the effort of redrawing
an entire layout can be avoided, and (2) credibility with

368 Henriksen and Earle

end-users of the animation is enhanced, because they are
used to viewing the CAD drawing of the system. Proof
Animation's optional add-on DXF2PA and PA2ZDXF
utilities provide the capability of converting industry-
standard .DXF CAD files into Proof Animation layout
files, and vice versa. Note that as of this writing, Proof
Animation is the only animation softwarec we know of
which allows translation in both directions.

In addition to being able to import and export CAD
files, Proof Animation can read and write bit-mapped
screen images. It is very straightforward to save Proof
Animation screen images in industry-standard .PCX files
and incorporate them into presentations as slides. Third
party packages for producing very high-quality charts,
graphs and slides can also be used. There are many such
packages available, and virtually all of them can export
images as industry-standard .PCX files.

3.5 Maximizing Interoperability

Taken collectively, the design philosophies presented in
the three preceding sections can be summarized as
maximizing interoperability with other software. We
live in a mix-and-match era of software acquisition.
Clearly, no single vendor can hope to be the best
possible source of software to fulfill all the requirements
of an animation (simulation, animation, CAD, and
presentation graphics). Proof Animation's use of an
open, published, flexible, file-driven architecture, and its
ability to read and write industry-standard file formats,
enable users to implement a mix-and-match approach.

3.6 Post-Processor Operation

Proof Animation is a “post-processing” animation
package. As we have seen above, Proof Animation
requires two input files, the layout file and the trace file.
These files must be produced prior to invoking Proof
Animation; they cannot be written and read concurrently.
The post-processing approach offers two advantages: (1)
it allows total exploitation of PC hardware resources for
doing the animation, and (2) it allows the "playing" of
an animation many times and in many ways without
incurring the overhead of rerunning the simulation which
drives the animation. The ability to jump back and forth
in time during playback, coupled with the ability to
speed up and slow down vicwing speed, makes it casy to
investigate unusual system behavior.

3.7 Vector-Based Descriptions
In Proof Animation, all layout information is stored in

vector form. Vector-based descriptions are automatically
mapped into pixels (dots) to build a screen image. The

advantages of this approach include the following: (1)
layouts can be much larger than a single screen; (2) it is
possible to pan, rotate, and zoom in and out on demand:
and (3) objects can be made to rotate (rather than slide) as
they go around corners.

Many animation packages use a pixel-oriented
approach for drawing. This offers one great advantage:
by being able 10 manipulate individual pixels, one can
produce detailed, artsy images. However, this advantage
is outweighed by the following potentially crippling
disadvantages: (1) pixel-oriented images cannot be
rotated; (2) enlarging pixel images magnifies the
"jaggies" inhcrent in all such images, but tolerable with
normally sized images; (3) layouts are often confined to
single-screen images. (Some animators offer multi-
screen operation; however, the individual screens are
disjoint and independent, unlike Proof Animation's
single, continuous "canvas.")

3.8 Emphasis on Performance

A great deal of emphasis has been placed on Proof
Animation's run-time performance. High performance
enables Proof Animation to achieve very smooth motion
(60-70 updates per second). Other software can often
sustain refresh rates of only 5-10 updates per second.
The ultimate purpose of an animation is to convince
someone that you know what you're doing. Objects
which move smoothly across the screen are more
realistic than those that don't. Everyone knows that
forklifts are supposed to roll across the factory floor, not
jump.

4 THE ORGANIZATION OF PROOF
ANIMATION

Proof Animation is organized as a collection of menu-
driven modes. A mode is a collection of closely related
functions. Switching among these functions is very
casy. Usually, a single mouse click is all that is
required. Switching among modes implies major
changes of context. For example, running an animation
and drawing a layout are vastly different activities. Each
mode has one or two main menu bars at the top of the
screen. Clicking on main menu items invokes lower
level tools.

Proof Animation's modes are summarized as
follows:

Run Mode is the mode in which animations are viewed.
It provides menu tools for starting and stopping an
animation, controlling viewing speed, jumping ahead and
back in time, elc.

Proof Animation 369

Debug Mode is a variant of run mode. It provides tools
for stepping through individual events in an animation,
examining moving objects, etc.

Draw Mode is used for constructing layouts. Tools are
provided for drawing lines, arcs, text, messages (text
which can be altered at run-time), bars (for run-time
display of statistics), area fills, and named, preinitialized
objects.

Path Mode is used for defining fixed paths along which
objects can move. The geometry of a path is quickly
defined by clicking on lines and arcs of a layout. Tools
are also provided for defining path speeds, circularity, and
accumulation status. (Accumulating paths provide
automatic queueing for objects which "pile up" at the end
of the path.)

Class Mode is used for defining object classes. An
object class serves as a template for creating dynamic
objects which move around a layout and static objects
which generally remain stationary. The template
determines an object's size and shape and other properties
such as default speed. An animation of a freeway toll
booth might, for example, contain object classes for
cars, trucks, buses, and toll booths.

Presentation Mode is used for running scripted
presentations. Scripts can include static slides and
snippets of animation, separated by special effects, e.g.,
screen fades, dissolves, elc.

Setup Mode is used for examining and allcring
infrequently changed "configuration" data, e.g., altering
the color palette.

5 OVERVIEW OF PROOF ANIMATION
USAGE

5.1 Drawing a Layout

The first step in developing an animation using Proof is
to draw a layout. If you're fortunate enough to have a
CAD drawing of the system you wish to animate, you
can begin by importing the CAD drawing (using the
DXF2PA add-on utility). The drawing tools provided in
Draw Mode are easy to learn and use. While hcavily
mouse-oriented, Draw Mode also provides for keyboard
input, so if you need to draw a line of length 12.5 at a
45-degree angle, you can enter thcse specifications
numerically, rather than settling for a mousc-drawn
approximation.

5.2 Defining Object Classes

The second step in developing an animation is to define
one or more object classes, in Class Mode. Objects and
object classes are among the most important constructs
in Proof. An object class is a geometric description of
some type of object, such as an automobile. A traffic
model might include object classes for Automobiles,
Trucks, Buses, Campers, and Motorcycles. In addition
to shape information, an object class contains a few
other properties such as physical clearances, color, and an
optional speed.

Although Proof Animation does not purport to
implement a true “object oriented” framework, it is
meaningful to call an object an “instance” of an object
class. Expanding on the traffic model mentioned above,
one could have northbound and southbound cars; cars
making continuous turning movements; red, green, or
beige cars; fast cars and slow cars. Each of these cars is
an object, based on the single geometric description of an
automobile. There can be an arbitrary number of
“Automobile” objects in the system at once, but there
need be only one “Automobile” object class.

All motion and color-changing commands in Proof
Animation operate on objects. Most layouts are drawn
directly on the screen, and the background geometry
components cannot move or change color. If such
changes are required, the appropriate components must be
defined in an object class, and objects from the class
must be created and prepositioned in Draw Mode.
Objects so defined and created are called layout objects.

5.3 Defining Paths

The next step in developing an animation is almost
always to define one or more paths, using Path Mode.
Proof Animation provides two kinds of motion: absolute
motion and guided motion. Absolute motion, specified
by the MOVE trace file command, allows moving an
objcct between any two arbitrary points A and B. Guided
motion always occurs along a fixed route, called a path.
The geometry of a path is defined by clicking on
previously drawn (or imported) lines and/or arcs. Once
defined, paths are saved as part of the layout file.

Using paths is very simple, because Proof
Animation does all the work. The most commonly used
path command is PLACE [object] ON [path]. Once an
object is placed on a path, it will follow that path until
it visually comes to rest at the end of the path (or until it
is PLACEd elsewhere or DESTROYed). Paths provide
outstanding power in response to a single trace event
command.

Accumulating paths provide even greater power for
animating paths on which queueing can take place. On

370 Henriksen and Earle

accumulating paths, Proof Animation reflects physical
reality by visually enqueuing objccts when blockages
occur. This often makes a simulation model of the
system much simpler to construct, because such
queueing need not always be explicitly represented in the
model. A surprising number of systcms bchave in this
manner, from certain types of conveyors to supermarket
checkout lanes. Paths play an especially important part
in transportation and matcrial handling animations.

5.4 Producing a Trace File

In order to produce a Trace File, one must insert output
statements into a simulation model, to produce
appropriately formatted commands. The Proof
Animation Trace File command set has been designed to
be easily generated. Any language which can do
formatted writes to an ASCII file is capable of building a
Trace File.

5.5 Building a Presentation

As an optional, final step, one can build a Proof
presentation. Proof Animation's Presentation Mode lets
users create scripted sequences of slides and animated
segments selected from full animations. These
presentation elements can be linked together, using fades,
dissolves, and other special effects, to produce a polished
presentation. Complete presentations can be viewed
without ever leaving Proof Animation. Thus, awkward
switching back and forth between overhead transparencies
and computer displays during a presentation 1is
eliminated. The presentation developer can choose to
highlight areas of interest (in space or time) within the
animation, and thus draw the viewecr’s attention to
particular aspects of the simulation. Self-directed
presentations can be developed by incorporating viewer-
selectable menus.

6 SUMMARY

Animation is a powerful addition to any simulation
effort. An animation benefits the modeler in
verification, validation, and presentation of results, and
helps with the overall system design process.

Simulation and animation technology is
improving. Wolverine Software Corporation is
contributing to this improvement by providing an
innovative animation package called Proof Animation.
This general purpose animator boasts many important
features. Among these featurcs are the ability to create
presentations, an open architecture (for compatibility
with a variety of software), a CAD-like structure,
smooth motion, and powerful drawing features.

REFERENCES

Brunner, D.T. 1992. Using Proof Animation.
Annandale, Virginia: Wolverine Software
Corporation.

Brunner, D.T. and N.J. Earle. 1991. Proof Animation
CAD Translator User’s Guide. Annandale,
Virginia: Wolverine Software Corporation.

Brunner, D.T. and J.O. Henriksen. 1989. A General
Purpose Animator. In Proceedings of the 1989
Winter Simulation Conference, eds. E.A. MacNair,
K.J. Musselman, and P. Heidelberger, 249-253.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Earle, N.J., D.T. Brunner and J.O. Henriksen. 1990.
Proof: The General Purpose Animator. In
Proceedings of the 1990 Winter Simulation
Conference, eds. O. Balci, R.P. Sadowski, and R.
Nance, 106-108. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

JAMES O. HENRIKSEN is the president of
Wolverine Software Corporation. He is a frequent
contributor to the literature on simulation and has
presented many papers at the Winter Simulation
Conference. Mr. Henriksen served as the Business
Chairman of the 1981 Winter Simulation Conference and
as the General Chairman of the 1986 Winter Simulation
Conference. He has also served on the Board of Directors
of the conference as the ACM/SIGSIM representative.

NANCY J. EARLE is a Senior Industrial Engineer at
Wolverine Software Corporation. She received B.S.
(1982) and M.S. (1984) degrees in Industrial Engineering
from Purdue University, where her concentration was in
simulation. She joined Wolverine in 1989. Her
responsibilities include consulting, training, technical
support, and product development support. Previously,
she worked for Corning, Incorporated as a simulation
analyst in manufacturing. While there, she developed
and taught short courses in simulation. Ms. Earle is a
member of SCS and is the Exhibits Chair for the 1992
Winter Simulation Conference.

