Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

SIMSCRIPT I1.5 AND SIMGRAPHICS TUTORIAL

Edward C. Russell

Russell Software Technology
1735 Stewart Street
Santa Monica, California 90404, U.S.A.

ABSTRACT

The SIMSCRIPT II.5 programming language is de-
scribed. SIMSCRIPT II.5 with its integrated graphical
interface, SIMGRAPHICS, substantially reduces time
and effort in simulation model development. Its
English-like syntax improves readability of the code and
substantially reduces the need for documentation.

1. INTRODUCTION

SIMSCRIPT 1I1.5 is a well established, standardized,
and widely used language with proven software support.
Experience has shown that SIMSCRIPT ILS reduces
simulation programming time and cost several fold when
compared to FORTRAN. It assists the analyst greatly in
the formulation and design of simulation models and
gives the programmer and analyst a common language
for describing the model. The benefits of using
SIMSCRIPT II.5 can be felt at all stages in the
development of a model, including:

1.1 Design

The powerful “world-view” consisting of Entities,
Attributes, and Sets provides a natural conceptual
framework in which to relate real objects to the model.

1.2 Programming

The modern free-form language contains structured
programming constructs and all the built-in facilities
needed for model development. Model components can
be programmed so as to clearly reflect the organization
and logic of the modelled system.

1.3 Testing

A well-designed package of program testing facilities
is provided. Tools are available to detect errors in a

323

complex computer program without resorting to memory
dumps and other archaic means.

1.5 Evolution

The SIMSCRIPT II.5 program structure allows the
model to evolve easily and naturally from simple to
detailed formulation as more information becomes
available. Many modifications, such as choices of set
disciplines and performance measurements are simply
specified in the program preamble in a non-procedural
manner. Animation and presentation graphics can even
be changed without program modification.

1.6 Documentation

The powerful English-like language allows for
modular implementation. Because each model
component is readable and self-contained, the model
listing can be understood by the end-user who may not
be at all familiar with programming. Because the
detailed model documentation is the program listing, it is
never obsolete or inaccurate.

2. OVERVIEW
2.1 Purpose of simulation

The purpose of a simulation must be clearly
articulated before embarking on model development.
Many modelling efforts have been doomed to failure,
because a clear goal was never determined. The natural
tendency is to model in great detail that part of the
system which is well understood and “sweep under the
rug” or over-simplify those parts which are not
understood. The detailed model of the well understood
parts yields many lines of model code and gives the
illusion of great progress, when in fact, a much smaller
model of the entire system may actually be of much
greater value.

324

In general, a model is an abstraction of the real system
under study. It is not necessary or even desirable to
include all of the details of the actual system. Deciding
which details are essential and which may be omitted for
the purposes of the study is perhaps the most difficult
task which the modeler faces.

2.2 Concept of a World-View

Without its world-view, SIMSCRIPT II.S would be
just another programming language, albeit a very
powerful one. But with its world-view, the modeler is
guided in the formulation of a complete specification of
the problem. The objects in the real world map very
naturally into SIMSCRIPT IL.5 objects, which break
down into classes termed TEMPORARY ENTITIES,
PROCESSES, and RESOURCES. (All capitalized words
are part of the SIMSCRIPT 1.5 vocabulary.) Any entity
may have ATTRIBUTES which give it individual
characteristic values. While all instances of a particular
entity class have the same named attributes, each
instance has its own values for the attributes. In
addition, entities may be organized into SETS in order to
represent any type of ordered list with various ordering
disciplines (FIFO, LIFO, or RANKED by any
combination of attribute values).

After the static structure of the model has been
described, the dynamic aspects are described in terms of
process routines. Each process routine corresponds to a
declared process entity. Very natural commands are
employed for manipulating objects in the process
routines. Processes may WORK or WAIT for a period of
simulated time. They may be FILEd in sets or
REMOVEd from them. They may ACTIVATE,
INTERRUPT, or RESUME one another. Processes may
REQUEST or RELINQUISH resources, automatically
waiting for those which are unavailable when requested,
and automatically starting other processes when
relinquishing unneeded resources.

Animation in SIMSCRIPT IL.5 is a very natural
extension of the established world-view. Entities may
be declared to be GRAPHIC in order to participate in
animated displays. The actual form of the display (the
so-called “icon”) is described through the use of an
editor and may be changed independently of the model.

2.3 Self-Documenting Code

Over the years, we have observed numerous
unsuccessful simulation projects that had no
documentation except for a FORTRAN listing. Many of
these listings contained few explanatory comments.
Even a thoroughly commented FORTRAN listing is
difficult to decipher for anyone other than the person

Russell

who wrote it. Often, even the original author has
difficulty understanding it after a short time.

We have also seen great amounts of money wasted on
manuals and flowcharts intended to make it easier to
develop, maintain, modify and enhance the model. This
waste is a consequence of the realities of model
development. Most models evolve over a long period of
time because of new and increased understanding of the
system, changing goals, and availability of new data.
Because of the evolutionary changes, flowcharts, prose
documentation, detailed descriptions of routines and
variables, and program comments often become
obsolete, incomplete, or incorrect shortly after they are
written. The longer the model is around—and many
models in use today were developed five or more years
ago—the more this type of documentation deteriorates.

For the purposes of computer program development,
modification, and enhancements, the only dependable
documentation in a changing environment is the source
program listing. The quality and usefulness of this
documentation is determined by the model design and
the choice of simulation language. SIMSCRIPT II.S has
been shown to reduce the amount of code required when
compared to FORTRAN by at least 75%, a four to one
reduction!

2.4 Large model development

SIMSCRIPT II.5 has traditionally been the language
of choice for very large models. There are no inherent
limits to this size of either SIMSCRIPT IL.5 programs or
their data structures. The dynamic storage allocation of
SIMSCRIPT II.5 frees the modeler from concerns about
the size of data elements and all the error-checking code
necessary to enforce array limits. The modularity of the
language structure permits large teams of developers to
work on independent segments of the model without
needing to know all of the details of other elements of
the model.

2.5 Portability

SIMSCRIPT IL5 is a truly portable language. It was
originally developed for large mainframe computers, but
it has evolved with the industry to implementations on
mini- and now microcomputers. The IBM Personal
Computer implementation of SIMSCRIPT IL.5 is one of
the most advanced software packages available on that
computer. The modelling language has been designed
and maintained to be compatible across all the
implementations. These include PC (DOS, Windows,
0S/2), SPARC Station, DEC Station, HP 90007700, IBM
RS6000, VAX, and CRAY.

SIMSCRIPT IL.5 and SIMGRAPHICS 325

3. SIMSCRIPT II.5 LANGUAGE FEATURES

SIMSCRIPT 1IL5 is a complete programming
language. In addition to its simulation modelling
capabilities, it has a full range of input/output
capabilities including the ability to specify either
formatted or free-form input, screen-oriented output
(including cursor placement). generalized reports which
may expand to multi-page width as well as length. The
TEXT mode of variable declaration permits very general
text manipulation of character strings of arbitrary length,
including operations such as concatenation, substring
search and replace, case change, etc.

The entity/attribute/set structure mentioned above is
an extension of a very powerful underlying data
structure. Arrays in SIMSCRIPT IL.5 may be of any
dimension whatever, without limit. The allocation of
storage for the arrays occurs during execution and arrays
may be deallocated and reallocated with different
dimensions. (If there were a need for much reallocation,
the temporary entity concept would more likely be
used.)

SIMSCRIPT 1IL5 contains all of the constructs of
modern structured programming. Search commands
relate to the data structures to be scanned. Program
segments may be modularized along functional lines as
routines, functions, monitoring routines (to be called
implicitly when the monitored variable is either accessed
or modified or both), as well as the process and event
routines of simulation. Routines may also be executed
recursively.

The support of the representation of statistical
phenomena is extensive. Generators exist for random
numbers distributed according to uniform, integer
uniform, normal, lognormal, exponential, beta, gamma,
Erlang, Poisson, binomial, triangular, and Weibull
distributions. If these are not sufficient, an arbitrary
numerical distribution is available to describe any
distribution as a table of values versus probability
(individual or cumulative).

The collection of data in the form of statistical
performance measures is supported by three very
powerful statements: ACCUMULATE, TALLY, and
COMPUTE. ACCUMULATE and TALLY update statistical
counters as the variable of observation changes values.
Then only when the results are needed are the final
statistical calculations performed. The measures
available include number of samples, sum, average,
maximum, minimum, standard deviation, variance, sum
of squares and mean square. ACCUMULATE performs
these calculations on a time-dependent basis, while
TALLY performs them on a sample-basis.

SIMSCRIPT 115 has recently been enhanced to
enable the user to develop models which include

processes which change continuously with simulation
time. This enables models to be built for those systems
which are described in terms of differential equations
with superimposed discrete events. The combined
capabilities enable the user to define models where
dependent variables may change discretely,
continuously, or continuously with discrete jumps
superimposed.

Part of the ongoing development effort of
SIMSCRIPT I1.5 is to make the interface between user
and model easier to understand. Traditionally, the
output of a simulation run was collated tables of data
which required extensive analytical capability on the
part of the user in order to understand the underlying
interactions between various parts of the system under
investigation. Much progress has been made in
providing facilities within the language whereby these
interactions may be represented graphically. This
enables models to be developed in which the parameters
can be easily represented as presentation graphics such
as pie charts, strip charts, dials, level meters, bar graphs,
etc. These so-called smart icons are updated on the
screen as the simulation proceeds. In addition,
animation capabilities have been developed to display
moving objects against a static background in order to
give further insight into the complex interactions which
take place within a system.

The preparation of the presentation graphics as well as
the icons for animation is accomplished through the use
of editors. The icons are stored with the program but
may be modified without having to modify the program
or clutter it with non-system related code.

4. THE PC SIMLAB ENVIRONMENT

Many of the capabilities of PC SIMSCRIPT ILS are
made possible because of SIMLAB. SIMLAB is an
operating environment for the SIMSCRIPT ILS
compiler, editors, and run-time. SIMLAB supports a
multitasking environment in which it is possible to
perform several tasks simultaneously. During program
development, it is possible to edit several portions of the
program simultaneously (in different windows). During
execution, it is possible to open debug windows, set
break points, and track the execution of the program
through its source code. It is also possible to have
multiple, concurrent output streams to different
windows. SIMLAB also makes it possible to write,
maintain, and execute programs which are much larger
than the actual memory of a PC can contain. Through its
virtual addressing mechanism, programs which would
normally require main frame capacity are being
developed on PCs.

5. EXAMPLE CODE

Simulation involves the passage of time in the life of
some object. For example, passengers arrive at an
airport, wait for a passenger agent, get a boarding pass
and leave.

General purpose programming languages, such as
Pascal, C and FORTRAN, lack the constructs to make
time pass in a simulation. The programmer has to write
these constructs before he or she can get on to writing
the simulation.

5.1 Processes

In general, SIMSCRIPT ILS's simulation constructs
are built around the concept of a process. This is a
routine that describes what happens to the object as it
moves through time. For example, here is the
SIMSCRIPT.IL5 code that processes a passenger in a
terminal.

Process PASSENGER
Define ARRIVAL.TIME as a real variable
Let ARRIVAL.TIME = time.v
Request 1 PASSENGER.AGENT
Let WAITING.TIME = time.v - ARRIVAL.TIME
Wait exponential. {(MEAN.SERVICE.TIME, 1)
minutes
Relinquish 1 PASSENGER.AGENT
End "PASSENGER

Before getting into the details, a comment about style
is in order. SIMSCRIPT IL.5, unlike many other
languages, is not case sensitive: ARRIVAL.TIME and
arrival.time are the same variable.

While SIMSCRIPT I1.5 will not punish you for failing
to capitalize a word, it does require that variables be
spelled correctly. If you misspell a word, you will get a
warning message: Local variable used only
once. This is part of SIMSCRIPT IL.5's substantial
error checking capability.

As a matter of style all SIMSCRIPT II.5 words are
shown as capitals and lower case; user defined words are
all capitals. This way the substance of the model is
apparent as you scan the code. The two apostrophes at
the end of the process routine are the beginning of a
comment. The first statement declares
ARRIVAL.TIME (0 be alocal, real variable.

The PASSENGER.AGENT is a resource. The
PASSENGER has to have a PASSENGER . AGENT before
he can get a boarding pass. So he requests one, if one is
available, the next line of code is executed immediately.

If a PASSENGER.AGENT is not available, control
passes to the timing routine. The timing routine files

Russell

this PASSENGER in queue waiting for 3
PASSENGER.AGENT and starts execution of the next
process.

When a PASSENGER . AGENT becomes available and
this PASSENGER is first in the queue, the timing routine
removes the PASSENGER from the queue and schedules
it to continue execution. When this PASSENGER is the
next process to be executed, control returns to the
process routine at the line after the request statement.

The next statement calculates the amount of time the
PASSENGER had to wait for a PASSENGER . AGENT,
Time . v is the current simulated time.

The Wait statement represents the passage of time
while the PASSENGER gets his boarding pass. The
amount of time is drawn from an exponental
distribution with a mean of MEAN.SERVICE.TIME
using a random number stream 1.

As with the resource, control passes back to the
timing routine. The timing routine files the
PASSENGER in a queue of pending events, called an
event set. This queue is ranked by the time of
reactivation. Reactivation time for this PASSENGER is
the current simulated time plus the amount of time
drawn from the exponential distribution.

When this PASSENGER is next up for execution,
control returns to the statement after the wait statement.
The PASSENGER relinquishes the
PASSENGER.AGENT so that someone else can use it
and disappears from the scene.

The great advantage of this construct is the modeler
can write the steps of the process in structured English.
Having done this, he or she only has to create passengers
when they are needed, and SIMSCRIPT I1.5 will handle
all details of scheduling and execution.

Notice that the process is clear about what is supposed
to happen. This reduces the chances of logical errors in
coding. More importantly, an airline employee can read
the code and know whether it represents what really
happens.

5.2 Creating Instances of Processes

The process routine show what happens to one
passenger. We need 1o create many passengers to run a
simulation. The general technique involves creating a
second process that functions as a passenger generator.

SIMSCRIPT I1.5 and SIMGRAPIIICS

Process PASSENGER.GENERATOR
Define I as an integer variable
For I =1 to 120,
Do
Activate a PASSENGER now
Wait exponential.f INTERARRIVAL.TIME, 2)
minutes
Loop
End '""PASSENGER.GENERATOR

PASSENGERs are created one at a time with some
time passing between creation of each PASSENGER. In
actuality, this is the wait between arrivals that normally
occur at an airport: generally passengers do not all show
up at once.

The PASSENGER.GENERATOR will create 120
passengers. An alternative to the For statement is:

Until time.v >= RUN.TIME

In this case PASSENGERs would be created until
some simulated time had passed, say eight hours.

The Activate statement creates the process notice
for this instance of the passenger, scts the reactivation
time, time.a, to time.v (i.e. now) and files it in the
event set. The PASSENGER.GENERATOR then waits
some amount of simulated time before looping and
creating the next PASSENGER. It passes control back to
the timing routine. The timing routine sets the
PASSENGER.GENERATOR's reactivation time to the
current time plus the time drawn from this exponential
distribution.

It then files the PASSENGER.GENERATOR in the
event set, gets the next process notice and starts
executing it. When the PASSENGER . GENERATOR is
first in the event set, the timing routine returns to the
statement after the Wait statement, loops, creates the
next passenger and goes back to the event set.

5.3 Running the Simulation

All that remains is to start the simulation and build
some I/O structure to support the model. As in any full-
featured language, SIMSCRIPT IL.5 supports formatted
input and output of text.

More significantly, SIMSCRIPT IL.5's built-in
graphics package, SIMGRAPHICS, supports a wide
range of presentation graphics and animation. Well-
designed animation greatly enhances the effectiveness of
the simulation, allowing you to better understand what is
happening in the model.

327

6. SIMSCRIPT II.5 AVAILABILITY

SIMSCRIPT ILS is a proprietary product of CACI
Products Company. It is sold on a free-trial basis. A
special university program is supported by CACI in
which SIMSCRIPT I1.5 is supplied to educational
institutions for the cost of distribution.

7. TRAINING

Week-long training courses are given by CACI on a
regular basis. These courses are held in their training
facilities in La Jolla and Washington, D.C., as well as at
other locations throughout the world. The same course
is available for on-site training from Russell Software
Technology.

REFERENCES

Russell, E.C. (1989), Building Simulation Models with
SIMSCRIPT 11.5, CACI Products Company, La Jolla,
CA.

CACI (1992), SIMGRAPHICS User's Guide and
Casebook, CACI Products Company, La Jolla, CA.
CACI (1991), SIMSCRIPT I1.5 Reference Handbook,

CACI Products Company, La Jolla, CA.

CACI (1990), Major Applications of SIMSCRIPT II.5
with SIMGRAPHICS, CACI Products Company, La
Jolla, CA.

AUTHOR BIOGRAPHY

Dr. Edward C. Russell, President of Russell Software
Technology, has over twenty five years experience in the
simulation profession. While at CACI, he helped to
design and implement the SIMSCRIPT II.5
programming language.

He developed and regularly teaches simulation and
modelling courses. He consults with business and
government clients on the use of simulation in such
wide-ranging applications as manufacturing systems
design, missile defense systems, munition distribution
systems, oil tanker schedule planning, and computer
network design.

Dr. Russell is the author of the popular textbook on
simulation entitled Building Simulation Models with
SIMSCRIPT I1.5.

He regularly teaches course on modelling and
simulation for the Department of Engineering and the
Anderson Graduate School of Management at UCLA.

His academic credentials include both an M.S. and
Ph.D. in Computer Science (Engineering) from UCLA
and a B.S. in Electrical Engineering from Wayne State
University.

