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ABSTRACT

This tutorial gives a summary of current research
in graphical statistical analysis and shows how to apply
these techniques to a range of problems in simulation
output analysis. The tutorial is not tied to a specfic
software package. It covers methods that may be found
in many different products. The examples in the tutorial
were done by the S system from AT&T Bell
Laboratories.

1 INTRODUCTION

Graphical analyses of simulation output are usually
easier to explain than mathematical analyses. A visual
display of the results quickly conveys information about
the model that might require hours of study to glean
from mathematical results. Less mathematically inclined
audiences, such as the managers who must rely on
simulations to support their decisions, find graphical
analyses easier to comprehend than pages of numbers
from an analytical model. Graphical analyses also tend
to promote a dialogue between the producers and users
of simulation output. Decision-makers can question
results without having to put their questions into a
mathematical formulation. In probing a model, they can
simply point to a graphical feature and ask questions
based on it. A final benefit of graphical techniques is
that they are non-parametric. They bring to the analysis
fewer underlying mathematical assumptions about the
output. Many mathematical models require the output to
be Gaussian, exponential, poison or to fall into some
family of distributions. Often these assumptions are
mathematically untenable, or at least of dubious quality.
Because of their non-parametric nature, graphical
techniques are less misled by deviations from underlying
assumptions.

This tutorial will look at five basic classes of
problems and explore graphical methods for addressing
them. The five problems are:

1. Validating a simulation by comparing a single

output against target data;
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2. Comparing a single output

simulation models;

3. Characterizing a single output as the simulation

changes over time;

4. Characterizing a complicated simulation based

on many outputs;

5. Comparing many

models.

While many of the methods described in this paper
are not part of commercial presentation graphics
software, they are commonly found in commercial
statistical analysis packages. The paper uses the S
system, described in Becker, Chambers and Wilks
(1988) that was runs on Unix workstations and DOS
PC’s. The principal advantage of this tool is that it
appears, at least temporarily, to be the research tool of
choice in the statistical community. Statisticians are
constantly writing new algorithms and functions for it.
Many of these functions may be retrieved from the
STATLIB file server at Carnegie Mellon university. (To
get information about STATLIB, send electronic mail to
statlib@temper.stat.cmu.edu with the single line: SEND
INDEX. The fileserver will return a list of available
software and further instructions for the use of
STATLIB.) Other packages that can be used for these
analyses include SYSTAT, JMP, Statexec, SPSSX PC,
LispStat, and Number Cruncher.

aCross many

complicated simulation

2 GRAPHICAL MEASURES

In performing graphical analysis, we are usually
interested in three quantities: the center, the spread and
the distribution of the data. The center of the data,
commonly measured by the mean or median, is often the
focus of the analysis. In a typical simulation study, we
are attempting to estimate average delay, average traffic
flow, average time in the system. The center of our
data, whether measured by the arithmetic mean, the
median or a batched mean, is an estimate of the true
average.

The analysis is incomplete if confined to the center
of the data. The spread, measured by standard
deviations, median absolute deviations and confidence
regions, measures the extent to which the data clusters
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around the center. Even though models are often built
to study mean effects, such effects cannot be separated
from spread effects. For a simple example, we can
construct an inventory system problem in which we are
attempting to guarantee that every request is filled within
2 hours of its submission and within 1 hour on average.
A simulation study might discover a simple restructuring
of the system that vastly improves the system for a few
numbers of parts and lowers the average time to, say, 45
minutes. To make that improvement, that change might
slightly degrade the performance of the system for most
parts, while improving the performance in retrieving a
few heavily requested parts. Such a change increases the
spread in times and increases the number of parts that
cannot be found within the two hour goal.

The above example illustrates that unless you
restrict studies to fixed families of distributions, the
center and spread of a data aren’t enough to characterize
the process that produced the data. Different sets of data
can possess the same mean and standard deviation, for
example, but have wildly different distributions.

3 VALIDATING THE OUTPUT OF A
SIMULATION

Problem:

The results from this section come from a finite
horizon performance study of an interleaved, anticipatory
cached disk drive. It is a small model that will
eventually be incorporated into a larger processor model.
If it does not accurately represent the physical
subsystem, The larger model will be of dubious value.
The simulation consists of feeding a stream of disk seek
instructions into the drive and recording the time
required to fulfill each request. We will compare two
sets of simulated data to a single set from the physical
system. We denote the set of data from the physical
system as X, and the two sets from the simulation runs
as X, and X,. In this example, the means and standard
deviations of the three sets were equal to three
significant digits and no statistical test was used to
determine if they differed. What remained was to verify
that the two sets of simulation output had the same
probability distribution as the original data.  This
comparison was done by means of a QQ plot and
confidence bands.

Method:

A QQ plot is a quantile - quantile plot. The name
is a bit misleading because it actually uses percentiles of
the data. To compare the distributions of two data sets
with a QQ plot, we plot the percentiles of the data
pairwise on a scatterplot. In this example, the data sets

are of the same size, this means that the data sets are
sorted from smallest to largest and the data are plotted
pairwise, matching smallest with smallest and so on. In
general, the data sets are often of different sizes. In
those cases, the QQ plot is constructed by using the
empirical cumulative distribution functions of the data.
In such a case, the QQ plot for comparing data set 1
with data set O would be constructed by graphing

(x, F/''(Fy(x)). Here, both Fy() and F() are empirical
distribution functions of data set X, and X,. If data set
X, has Nj points, we can estimate Fy(x) as

Fy(x) = (the number of points < x) / N,, where N, is
the number of points in data set X,. F,() and F,() are
computed in a similar fashion.

F,"'() is simply the inverse of the function F,(). If
there are N, data points, F,'(x) is the [x*N,] largest
member of the data set X, where [ ] represents the
function that rounds to the nearest integer. If x < 0,
then F"'(x) = smallest member of X,. If X = 1, then
F,'(x) = largest member of X,.

If the two distributions are the same, then the QQ
plot should form a diagonal line. Figure 1* gives a QQ
plot between the data from the physical system and the
data from the first simulation, X,. The data points don’t
exactly fall on the diagonal line, but they are close. A
diagonal line would clearly fall within the 95%
confidence band drawn around the QQ plot. The
confidence band is like a confidence band for a mean.
Since we are using the data to estimate the true
distribution function of the data, the QQ plot is no more
than an estimation. We are 95% certain that the true
QQ plot falls within the confidence band. The
confidence band is calculated by the formula
F'(Fy(x) £+ d + 1/(2N,)), where d is the 95% critical
value from the Kolmogorov-Smirnov distribution

Figure 2% compares the distributions of the data
from the physical system with the data from the second
simulation, X,. Note that many points fall outside the
confidence interval. Clearly the distribution of the two
data sets differ. The second distribution is much more
skewed. From the analysis we can conclude that the
first simulation is indeed a good representation of the
physical system. However, the second simulation does
not appear to be a good model for the physical disk
drive.

References:

Law and Kelton (1991, p380 ff) give a good
overview of the QQ plot. The confidence bound may be
found in Doksum and Sievers (1977).



316

4 COMPARING A SINGLE OUTPUT ACROSS
MANY SIMULATION MODELS

Problem:

The data in this section are from a simulation study
of 4 different machine tool configurations in the
manufacture of line transformers. The study looked at
the average amount of time it took an transformer core
to go through the line. The data was collected by
gathering batched means. We want to compare the
speed and efficiency of the 4 configurations. Our data
will be denoted X,, X,, X;, and X,,

Method:

A boxplot summarizes the distribution of data in a
simple, concise form to make it easy to compare.
Figure 3* gives a box plot for the first version of the
study. In this data set, each core took between 17 and
30 seconds to travel though the line. The central box of
the box plot represents the middle 50% of the data. For
this data, it indicates that the middle 50% of the data
took between 19 and 21 seconds to travel though the
assembly process. The line in the middle of the box
represents the median of the data. For the first
configuration, half of the parts took more than about 20
seconds and half took less. The two dashed lines
connected to the top and bottom of the boxes are
whiskers and represent the remaining 50% of the data.
These lines are constructed by the following algorithm.
From the top and bottom of the box, we draw lines that
extend 1.5 times the length of the box. We then shrink
the lines back until the end of the line is at the location
of the largest (or smallest, for the bottom line) less than
1.5 times the length of the box from the end. The
method is easier to do than describe. It is done to
ensure that the end of each line represents an actual data
point. The stars near the top represent data points that
are far from the bulk of the data. The points marked by
stars are often called outliers and indicate points that are
not representative of the bulk of the data.

Figure 4* gives the 4 box plots from the 4
simulation models. The second model is a clear
improvement over the first, although not all the data
demonstrate that improvement. The third model is
slower and has a higher variability. The last model does
not have as low a mean as the second model, but it has
a much tighter variance, indicating a greater uniformity.

To check to see if the medians are statistically
different, we use a notched box-plot, such as the one in
Figure 5*. Two medians are different at a 5% level if
the notches from their two boxes do not overlap. The
notches of box 2 and 4 overlap, indicating that the
medians of the two data sets are indistinguishable, and
that perhaps setup 4 is preferable to setup 2.
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References:

Law and Kelton (1991) give a brief discussion of
box-plots (381 ff). Other references are Tukey (1977)
and Chambers, Cleveland, Kliener, Tukey (1983).

5 CHARACTERIZING A SINGLE OUTPUT OF A
SIMULATION AS THE SIMULATION CHANGES
OVER TIME.

Problem:

This problem came from a large simulation of an
interactive television show for the final approval report
for the FCC. People were able to participate in the
show from their homes using a push-button phone. The
intent of the simulation was to demonstrate that the game
show winners would not be determined by the arbitrary
routing of telephone calls. The simulation is of the
phone network that ties the participants into the show.
The purpose of the simulation is to estimate the number
of lost or delayed messages, which are called
"exceptions”. Every 10 minutes, the simulation returns
the number of exceptions. The simulation is run as a
finite horizon simulation to simulation the 3 and a half
hour run of the show.

Method:

Figure 6* gives a plot of the number of exceptions
plotted against time. Estimating the center or the
expected number of exceptions at any time, is the line
passing through the data. It is a smooth function and
gives a better representation of the average behavior at
any time than the jagged plot of the raw data. The
smooth function in Figure 6% was created by a running
median smooth. To compute the value of the smooth at
time t, the program takes the median of a small group of
points on either side of time t, under the assumption that
the curve is changing slowly. The straightness or
curvature of the smooth is determined by the bandwidth,
the number of points collected to estimate the median.
A large bandwidth creates a flatter curve. A small
bandwidth creates a more wriggly curve.

There are several method of smoothing curves.
The median smooth, described above, has the advantage
that it is robust against large, unusual data items, such as
the ones that are found at the top of Figure 6*. Another
smoother is the lowess smoother (locally weighted
smoother), which creates its smooth by averaging points.
An example of a curve created by lowess can be seen in
Figure 7*. This version has a larger bandwidth than the
median smoother. If we set the bandwidth smaller, we
would see a curve similar to one produced by the median
smoother. The lowess smoother has the advantage that
it is easy to code and prepare.

Neither the lowess smoother nor the median
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smoother can interpolate between points. The best
smooth for that purposes is the spline smoother. A
spline (without the smoother) is a curve that is created
from piecewise polynomials. The polynomials are joined
end to end, creating a smooth curve. In addition, the
coefficients are chosen to make some of the derivatives
of the resulting curve continuous. Cubic polynomials
with 2 continuous derivatives are a commonly used
spline. A smoothing spline is a spline that represents the
data without going through all the points. The
coefficients are computed by solving a constrained
optimization problem, called a penalized likelihood
problem. Like the other smoothers, it has a concept of
bandwidth. Figure 8* gives a spline smoothed version
of the data, with approximately the same bandwidth as
the lowess smoother.

All three smoothers identify the rise in exceptions
at 100 minutes into the show. The basic structure is the
same across the three. The three smoothers have
different mathematical properties and different
advantages. The median smooth is robust or resistant to
deviant observations. The lowess smoother is simple.
The spline smoother can interpolate between points.

References:

The median smoother is presented in Tukey (1977)
and Mosteller and Tukey (1977). The lowess smoother
is found in Cleveland (1981) and the best treatment of
splines and spline smoothers is found in de Boor (1978).
A more theoretical treatment is in Buja, Hastie and
Tibshirani (1989).

6 CHARACTERIZING A COMPLICATED
SIMULATION BASED ON MANY OUTPUTS;

Problem:

The data for this example comes from a simulation
of a scalable RISC computer architecture.  The
architecture be divided into three components, instruction
decoder/integer arithmetic unit, io/memory controller
and floating point/graphics accelerator. ~ The three
components are independent in one sense, but interact
strongly with each other. The purpose of the simulation
is to determine final performance and to gain a sense of
how the three components work together. The
simulation is run as a steady state simulation, with batch
means of the percent utilization taken for each section
every 100,000 simulated clock cycles.

Method:

This section will present two related methods, one
static and other dynamic. The static method is presented
in Figure 8%, Figure 8* is a scatterplot matrix, a matrix
of all possible scatterplots. Scatterplots are duplicated in

the matrix and the plots that would go down the diagonal
are simply plots of variables with themselves and are
deleted. In the lower left corner, the relation between
the first and third sections is clearly seen. When the
first section (instruction decoder/integer arithmetic unit)
is fully utilized, the third (graphics and floating point) is
idling and vice version. The relation is a nice, clear
curve. The relation between the second section and the
third is seen immediately to the right. It, too is a
decreasing, but some what nosier and less strong
relationship. The only increasing relationship is seen
between section 1 and section 2. As section 1 becomes
heavily utilized, so does section 2. The scatterplots in
the upper right hand corner are mirror images of those
in the lower left.

Scatterplot matrices have had several important
generalizations.  The first is brushing.  Brushed
scatterplots is an interactive graphic, in which the
researcher identifies some points of interest in one plot
and highlights them. The corresponding observations are
highlighted in the remaining plots.

The second generalization is rotation. This is a
dynamic graphic in which a three dimensional scatterplot
is projected onto the computer screen. Using a mouse
or a tracker ball, the researcher can then rotate the point
cloud, looking for the most interesting projection. The
most interesting projection is usually one that shows the
strongest relationship and least randomness amongst the
data.

For more than three varables, this technique is
awkward. As the number of variables gets large, the
process of working through projections and rotations of
large data sets is extremely time consuming and difficult.
Part of the problem is that most projections of large data
sets look like Gaussian data. A graphical method that
simplifies this process is called the Grand Tour. Itis a
method that cycles through all possible projections of a
high dimensional data set are projected onto the screen
in a reasonable order. By studying these projections, the
user can again look for the strong relationship among the
data.

Even the Grand Tour can be tedious for high
dimensional data. It can involve hours of watching data
points move on a screen. An automated alternative is
projection  pursuit. Projection pursuit is a
computationally intensive method that attempts to find
the best projection and rotation of a large, multivariate
data set. Instead of projecting pictures on a screen and
asking a researcher to choose the best, it uses a numeric
optimization routine that sweeps through the set of all
possible projections and rotations in an attempt to
optimize an objective function.
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References:

Scatterplot matrices and brushing are discussed in
Becker, Cleveland, Wilks (1987) and Cleveland,
Chambers, Cleveland, Kliener, Tukey (1983). The
Grand Tour is found in Asimov (1985) and projection
pursuit in Friedman, and Tukey (1974). All of these
methods are available in the S system, described in
Becker, Chambers and Wilks (1988).

7 COMPARING MANY COMPLICATED
SIMULATION MODELS.

Problem:

Once a complicated model has been built, there is
often a need to compare it, in its full complication, with
other models. Again, we will be looking at data from a
simulation of scalable RISC computer architecture. Each
model is characterized by 17 different measurements,
including ready queue depth, bus utilization, 10 queue
depth, io utilization and so on. In this case we studied
five different configurations of the computers. The
simulations were done as steady state simulations, with
17 batch means taken every 100,000 simulated cycles.

Our graphical methods need to be able to capture
the complexity of the model in a simple form. Figure %
is a star plot that represents the means of the 17
measurements for the simulation of the standard
configuration of the RISC computer. Each arm of the
star radiating from the center is proportional to the
average of one measurement. In this figure, the arms
are labels, so that we can see that this configuration had
a low memory utilization, cache hits and processor
utilization, but fairly high io queue length, average
number of segment faults, ready queue length and
elapsed time per job. Lengths of the are standardized by
dividing each by the longest measurement.

Method:

To compare the different computers, we can look
at Figure 10*, which gives star plots for the five
configurations. Immediately we can identify similar and
dissimilar configurations. The Standard configuration is
similar to the Extend configuration without the
Accelerator. The Full Address Mode and the Extended
Configuration are another similar pair. The Revised
Configuration is clearly unlike any of the others. By
returning to the labels, we can see that the Full Address
and the Extended Configuration have high utilizations
and small queue sizes and behave in similar fashions.

Star plots are one among a number of multivariate
techniques for comparing models. They are one of the
more scientific methods and one of the most universally
applicable. Many methods, such as Chernoff faces, are
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too vague to be scientific and too silly to be given to
decision makers. On last technique that may be useful
is the Andrews plot.  Andrews plots reduce a
multivariate set of data to a curve, by reversing Fourier
analysis. If you have multivariate measurements a, ...,
a, for a single model, then the Andrews curve for that
model is E* a; cos (x27/n ). The Andrews curves for
the five computer models are given in Figure 10*. The
darker line running through the mess of wiggles is the
convergence of the Full Address and the Extended
Configuration models. From the curves, it is impossible
to read the individual features, but they can be quite
useful, especially if you have a large number of models
that fall into a small number of classes.

References:

Andrews plots, start plots and other tools for
viewing multidimensional data are described in Andrews
(1972).

8§ SUMMARY

The methods described above are just a few of
many graphical techniques for output analysis. Good
overviews of the state of the art include Chambers,
Cleveland, Kliener, and Tukey (1983), Cleveland (1985),
Cleveland (1987), and Cleveland and McGill (1988). A
good idea book for planing new techniques is Tufte
(1983).

Much current research is directed toward finding
complete environments for graphical analysis. One of
the more complete, state of the art research systems is
X-Gobi. It is a system that contains collection of
graphic primitives which can be used to build
complicated graphical analyses. These primitives range
from scatter plots to dynamic projections and rotations.
It runs as part of the S system on unix work stations that
have the X windows user interface.
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