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ABSTRACT

So-called Random number generators on computers
are deterministic functions producing a sequence of num-
bers which should mimic a sample of i.i.d. U(0, 1) random
variables. Two classes of tests are commonly applied to
such generators. Firstly, the theoretical tests, which look
at the intrinsic structure of the generator to derive be-
havioral properties of the sequence of points, usually over
the whole period. These theoretical tests are specific to
each class of generators and include the lattice and spec-
tral tests, discrepancy bounds calculations, period length
calculations, etc.. Secondly, the empirical goodness-of-fit
tests, which try finding statistical evidence against the null
hypothesis: “the sequence is a sample from i.i.d. U(0,1)
random variables”. In this paper, we survey the main
techniques from both classes, discuss their philosophy, and
look at some of the most recent developments in that area.

1. INTRODUCTION

Testing randomness, when speaking about (pseudo)-
random number generators on computers, is a rather fuzzy
concept. We already know, indeed, that none of these gen-
erators is truly random in the classical sense. According
to Kolmogorov, an infinite sequence of bits is random if it
cannot be described by a sequence shorter than itself. Ob-
viously, efficiency considerations preclude using that kind
of sequence for simulation applications. For a thorough
discussion of “what is randomness”, with appropriate ref-
erences, see §3.5 of Knuth (1981).

The random number generators that are used in prac-
tice produce in fact a deterministic, periodic, sequence
of numbers which should look sufficiently random for the
target application. Typically, they produce numbers be-
tween 0 and 1, which should look as if they were a sample
of i.i.d. variates from the U(0, 1) distribution (the uniform
distribution between 0 and 1).

To fix ideas, let us adopt the following definition, as
in L’Ecuyer (1990). A generator is defined by a finite set
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of states S, a transition function f : S — S, a probabil-
ity distribution g over S for the initial state, a set U of
output symbols, and an output function ¢ : S — U. The
initial state sp of the generator, called the seed, is selected
randomly from S according to u. Often, u is degenerate,
which means that even so is chosen deterministically. The
generator evolves according to s, := f(sn—1) and output
symbols are produced at each step by u, := g(s,). Since
S is finite, U will also be finite. If the aim of the gen-
erator is to produce (approximations of) U(0,1) random
variates, then U will be a finite set of real numbers be-
tween 0 and 1. The smallest positive integer p such that
Sp+n = sn for all » > v for some v > 0 is called the period
of the sequence (or of the generator).

How do we decide whether the numbers are sufficiently
random-looking ? One can apply a set of empirical sta-
tistical tests. If the generator passes all the tests, that
proves nothing formally, but improves confidence in the
simulation results that could be obtained by using that
generator. Some “standard” statistical tests for random
number generators are described in Dudewicz and Ralley
(1981), Knuth (1981), and Marsaglia (1985). Besides the
empirical tests, most generators can also be analyzed the-
oretically. For example, one can in some cases compute
bounds on the serial correlation, bounds on the discrep-
ancy, or characterize the geometrical behavior of the set
of all t-dimensional vectors formed by taking t successive
values produced by the generator, over its full period.

In this paper, we survey part of the developments in
techniques for testing random number generators. Sec-
tion 2 discusses theoretical tests, while Section 3 discusses
the empirical statistical tests. In Section 4, we apply a set
of statistical tests to some well known or recently pro-
posed generators. Practical implications are discussed in
the Conclusion.
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2. THEORETICAL TESTS
2.1. Period Length

Clearly, the period of a generator cannot exceed the
cardinality of its state space S. For optimal memory use,
it should be close to that cardinality. So, if b bits are re-
quired to represent the state, the period will be close to 2°.
Maximal period linear congruential generators (LCGs), in
scalar or matrix form, as well as Tausworthe generators,
inversive non-linear generators, many kinds of combined
generators, etc., have periods equal (or very close) to 2°
for a b-bit state, if the parameters are chosen appropri-
ately (Knuth 1981, L'Ecuyer 1990). Generalized Feedback
Shift Register (GFSR) generators (Lewis and Payne 1973,
Fushimi and Tezuka 1983) do not have that property and
can be seen as wasteful of memory. But Matsumoto and
Kurita (1992) have recently proposed a new variant, called
Twisted GFSR (TGFSR), which is practically as fast as
GFSR while making optimal use of their memory.

Modern computer simulations, because of faster com-
puters, are getting increasingly ambitious, and require
more and more random numbers. Any generator must
therefore have a very long period before deserving any
further consideration for general use. In my view, stan-
dard LCGs with modulo (and period) near 2!, which are
still recommended in most simulation books, should be
discarded because their period is too short (one can ex-
haust the period in a few minutes with a good computer).
I would say that anything less than 2°° for the period
is too low. In fact, with the latest developments in ran-
dom number generation, there is no reason for not taking
much longer periods than that, e.g., over 22°°. Of course,
no generator should be used for any serious purpose if its
period (or, at least, a lower bound on it) is unknown.

2.2. Lattice and Spectral Tests

It is well known that the vectors of successive values
produced by a LCG, in any given dimension, have a lat-
tice structure (Knuth 1981, Grothe 1988, L’Ecuyer 1990,
Ripley 1983). This was first observed by Coveyou and
MacPherson (1967), who also gave an algorithm for com-
puting the distance between hyperplanes and called it the
spectral test. Marsaglia (1968) later discussed the geo-
metrical interpretation more explicitly. LCG’s in matrix
form, including multiple recursive generators, also possess
that lattice property.

More precisely, let m be a positive integer (the mod-
ulus), A be a k x k matrix (the multiplier), while C' and
Xn, n >0, are k-dimensional (column) vectors with com-
ponents in {0,...,m — 1}. Let $ = {0,...,m — 1}* and
be Z* be any k-dimensional vector of integers. For any
Xo € S, define the sequence

Xn = (AXNn-14+C) mod m, (1)
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un = (b'Xn mod m)/m, (2)

for n > 1, where b’ denotes the transpose of b, and the
“modulo m” operation is performed elementwise. For
fixed m, A, C, b, and t > 0, let

Tt={(uny~~~»“n+t—l)|n20v XOGS}, (3)

the set of all possible overlapping t-tuples of successive
values produced by (1-2), from all possible initial seeds.
The set T turns out to be the intersection of a lattice L,
with the t-dimensional unit hypercube [0,1)". Recall that
a d-dimensional lattice in R' (for d < t) can be defined as
a set of the form

d
L={V=) zV|eachzeZy,
;=1
where V;,...,V4 is a set of independent vectors called

a basis. In our case, we want the lattice L; to be t-
dimensional, otherwise all the points of T, will be con-
tained in one hyperplane. For example, one can take m
prime, C = 0, b’ = (0,...,0,1), and A as the companion
matrix of a polynomial f(z) = a1z + --- + axz*, which is
primitive modulo m (Knuth 1981, L’Ecuyer 1990). This
is equivalent to a multiple recursive generator (MRG), of

the form
Tn = (a1Zn-1+ -+ axTp_x) mod m, (4)
Un = ZTn/m, (5)
where each z,, € {1,...,m — 1}. The period of such a

generator is then p = m* —1 (assuming that zo # 0), and
a basis for the lattice L, as well as for its dual lattice, can
be constructed as explained in Grothe (1988), L’Ecuyer
and Blouin (1988), and L’Ecuyer and Couture (1992).

If the generator does not have full period and if one
considers only the cycle that corresponds to a given initial
seed, then, in general, the points do not form a lattice, but
are still a subset of the lattice defined above, and typically
also generate that same lattice. There are cases, however,
where the points over one cycle generate a sublattice of
L (eg.,if k =1, C =0, mis a power of two, and
A mod 8 = 5; see Atkinson 1980). In the latter case, one
should analyze the appropriate sublattice instead of L,
which is the union of four such sublattices.

The fact that the points of T, belong to a lattice means
that they lie on a set of equidistant parallel hyperplanes.
The shorter the distance d: between those hyperplanes,
the better, because this means thinner empty (without
points) slices of space. Knuth (1981) gives an algorithm
for computing d. (called the spectral test). That algo-
rithm is not very efficient and becomes impracticable in
dimensions, say, larger than 10. Fincke and Pohst (1985)
give a more efficient algorithm, which can cope with di-
mensions up to 25 or so.
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A slightly different way of measuring the “quality” of
the lattice is by the Beyer quotient, defined as follows. Ge-
ometrically, the lattice L, “partitions” the space R' into
a juxtaposition of identical ¢-dimensional parallelepipeds,
whose faces intersect, whose vertices are points of the lat-
tice, and which contain no other lattice points except for
their vertices. Those are called the unit cells of the lat-
tice. All the edges connected to a given vertex of a unit
cell form a set of linearly independent vectors which is a
Minkowski-reduced lattice basis (MRLB) of L,. The Beyer
quotient g; is the ratio of the length of the shortest vector
over the length of the longest vector in a MRLB. A ratio
g: near one means that the unit cells are more cubic-like,
while a ratio near 0 means the opposite. In contrast to
d:, g: is a normalized measure (always between 0 and 1).
As a figure of merit to rank generators, one can take for
example the worst-case measure

Qr = min g. (6)

for some some (fixed) large T. However, g¢; is much more
costly to compute than d;. An algorithm to compute a
MRLB and the Beyer quotient is given in Afflerbach and
Grothe (1985) and Grothe (1988). The results of a search
to find good multiple recursive generators based on the
criterion Qo are given in L’Ecuyer, Blouin, and Couture
(1992), for orders k up to 7 and prime moduli up to near
283 As observed in L’Ecuyer (1990), comparing Beyer
quotients makes sense only for generators having the same
number of lattice points in the unit hypercube. A full pe-
riod MRG has m* such points, i.e., unit cells of volume
m~*, in all dimensions. For t < k, the lattice is a per-
fect square grid of size 1/m, and the Beyer quotient is 1.
Increasing m or k gives smaller unit cells. If a generator
G has smaller Beyer quotient than another generator Gz,
then G; might still be better than G if it has smaller unit
cells. In such a situation, as a bottomline criterion, one
can turn back to the distance d: between hyperplanes. If
G: has a smaller d, than G3 for all ¢, then we say that
G, dominates G, in terms of the spectral test, and claim
that G; has a better lattice structure. L’Ecuyer, Blouin,
and Couture (1992), for instance, propose MRG’s with
very small Beyer quotients, but which dominate all LCG’s
with the same modulus, while being competitive in terms
of speed. There exists other MRG’s of the same order and
with much better Beyer quotients, but those are harder
to implement and much slower.

Many pitfalls await those wanting to implement the
Beyer and spectral tests. The current best algorithms are
basically of “branch-and-bound” type. The bounds in the
branch-and-bound are computed via a Choleski decompo-
sition of the matrix of scalar products of the vectors of
the lattice basis (Fincke and Pohst 1985, Grothe 1988).
With larger moduli and in higher dimensions, numerical

instabilities are commonplace. According to our experi-
ence, with 64-bit floating-point computations, standard
Choleski decomposition algorithms often fail in high di-
mensions: at some point, one has to extract the square
root of a negative value! Even when that does not happen,
the results could be unreliable. Since it is used for comput-
ing bounds for the branch-and-bound, any small numer-
ical error in the Choleski decomposition may give wrong
bounds, which in turn could eliminate better solutions,
and yield wrong results for the Beyer or spectral test.
Further, for that branch-and-bound procedure to find the
optimal solution in reasonable time, the basis should be
reasonably pre-reduced (i.e., close to a MRB). A number
of heuristics can be used for that purpose. L’Ecuyer and
Couture (1992) have implemented algorithms for perform-
ing the Beyer and spectral tests in high dimensions (up
to around 40 or more, depending on the generator), and
for large moduli (say, a few hundred bits). Numerical er-
rors have been carefully taken into account to obtain true
bounds and “guaranteed” exact results.

To improve the statistical properties and perhaps get
rid of the lattice structure, different kinds of combined
generators have been proposed. Some of them have been
analyzed successfully and turn out to be equivalent, or
approximately equivalent, to LCG’s with large moduli
(L’Ecuyer and Tezuka 1991). Such combined generators
can be viewed as efficient ways of implementing LCG’s
with very large moduli (sometimes with added “noise”),
and can also be analyzed with the Beyer and spectral tests.
Other classes of combined generators are not (yet) well
understood theoretically. See L’Ecuyer (1990) and the
references given there.

The highly efficient add-with-carry and subtract-with-
borrow generators, recently proposed by Marsaglia and
Zaman (1991), also turn out to be equivalent to LCG’s
with huge moduli, with a truncated fractional expansion
(see Tezuka and L’Ecuyer 1992). So, again, those gener-
ators have an approximate lattice structure (in high di-
mensions).

Tausworthe and GFSR generators also have a lat-
tice structure. Tezuka and L’Ecuyer (1991) and Couture,
L’Ecuyer, and Tezuka (1992) show that simple or com-
bined Tausworthe generators are equivalent to linear con-
gruential generators defined over a field of formal Laurent
series. By analyzing the lattice structure of such gen-
erators, they are able to characterize their t-dimensional
behavior. For a given generator, for any partition of the
t-dimensional unit hypercube into 2*' identical subcubes,
they can quickly compute a table giving the exact num-
ber of subcubes that contain n points, for each integer n.
Tausworthe generators can be viewed as a special case of
GFSR generators. Indeed, a Tausworthe generator can be
implemented as a GFSR with a special kind of seed, and
any GFSR with that kind of seed is equivalent to a Taus-



worthe generator (Fushimi 1989). So, the above theory
also characterizes the behavior of GFSR generators with
that kind of seed. To deal with more general GFSR gen-
erators, one needs some extensions of the notion of lattice,
as pointed out by Tezuka (1990).

2.3. Discrepancy and Other Measures

The notion of discrepancy has been the subject of a
lot of papers on random number generators. Here, we
just give it a quick look. For more details, see the many
references given in Niederreiter (1991).

Suppose we generate N t-dimensional points P, =
(2ny.- - untt—1), 0 < n < N — 1, formed by successive
overlapping subsequences of length t. For any hyper-
rectangular box aligned with the axes, of the form R =
H;=1[a,, B;), with 0 < a;, < 3, < 1, let I(R) be the num-
ber of points Py falling into R, and V(R) =[]’ _, (8, —«a;)
be the volume of R. Let R be the set of all such regions
R, and

DY) = max|V(R) ~ I(R)/N|

The latter is the t-dimensional discrepancy for the se-
quence of points Py, ..., Pny_1. (There is also an alter-
native definition of discrepancy which imposes a; = 0 for
all 5.)

Points whose distribution is far from uniform will have
high discrepancy, while points which are too evenly dis-
tributed will tend to have a discrepancy that is too low.
A well behaved generator should have its discrepancy in
the same order as that of a uniform sequence. Discrep-
ancy is interesting and useful because one can obtain error
bounds for (Monte Carlo) numerical integration or ran-
dom search procedures in terms of Ds\t,). In that context,
the smaller the discrepancy, the better (because the aim
is to minimize the numerical error, not really to imitate
i.i.d. U(0,1) random variables). Finally, generators of dif-
ferent types (e.g., linear vs nonlinear) can be compared
in terms of the order of magnitude of their discrepancies.
This cannot be done with the spectral test. The major
difficulty with discrepancy, though, is that it can be com-
puted exactly only for a few very special cases (e.g., for a
LCG, for t = 2). However, for many classes of generators,
bounds on D(,\;) are available (Niederreiter 1991). Another
drawback is that discrepancy measures are dependent on
the orientation of the axes, in contrast to the Beyer or
spectral tests.

A number of other “statistical properties” can be com-
puted exactly (or bounds for them can be computed) for
specific classes of generators. That includes computing
bounds on the serial correlation (Knuth 1981), computing
the results of the “run” test applied over the whole se-
quence of a Tausworthe generator (Tootill, Robinson, and
Adams 1971), computing the nearest pair of points over
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the whole period, or the minimal number of hyperplanes
that cover all the points, etc.

3. EMPIRICAL STATISTICAL TESTS

An unlimited number of empirical tests can be de-
signed for random number generators. The null hypothe-
sis is Ho: “The sequence is a sample of i.i.d. U(0, 1) ran-
dom variables”, and a statistical test tries to find empirical
evidence against Ho. Any function of a finite number of
U(0,1) random variables, whose (sometimes approximate)
distribution under Hy is known, can be used as a statistic
T which defines a test for Hp.

3.1. Multilevel Tests

To increase the power, a given test can be replicated
N times, on disjoint parts of the sequence, yielding val-
ues 11,...,Tn of the statistic. The empirical distribu-
tion of those N values can then be compared to the the-
oretical distribution of T under Hy, via standard univari-
ate goodness-of-fit tests, like Kolmogorov-Smirnov (KS),
Anderson-Darling, or Cramer-von Mises (see Durbin 1973,
Stephens 1986a, b). We call this a two-level test.

For the examples of the next section, we computed the
value d of the KS statistic Dy, and the descriptive level
62 of the two-level test, defined as

8, = P[Dy > d | Ho). (1)

Under Ho, 62 should be U(0,1). A very small value of
8> (say, 62 < .01) provides evidence against Hy. In case
of doubt, the whole procedure can be repeated (indepen-
dently), and if small values of 6, are produced consistently,
Ho should be rejected, which means that the generator
fails the test. If 62 is not too small, that improves confi-
dence in the generator. It should be clear, however, that
statistical tests never prove that a generator is foolproof.

For further increase in power, one can also perform a
three-level test: replicate the two-level test R times, and
compare the empirical distribution of the R values of 62
with the U(0,1) distribution, using again a goodness-of-
fit test, and yielding a descriptive level §;. Reject if 63
is too small. One can also go up to fourth level, fifth
level, and so on. However, one major problem showing
up with higher-level tests is that in most cases, the ex-
act distribution of the first-level statistic T under Hp is
not available, but only an approximation of it is (e.g., 2
chi-squared distribution). Often, that approximation is
also the asymptotic distribution as the (first-level) sam-
ple size increases to infinity. What could happen then
is that the higher-level test detects the lack-of-fit of that
approximation, leading to rejection even if the generator
is good. The higher the level, the more this is likely to
happen. Perhaps this problem could be alleviated in some
cases by finding better statistics or better approximations,
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but usually not eliminated. Similarly, for a three-level (or
more) test, if a KS statistic is used at the second level, the
N descriptive level values §; will usually be computed us-
ing the asymptotic (as N — oo) KS distribution. Again,
if N is too small, the test will detect the fact that the
asymptotic is not yet a good enough approximation. So,
for higher-level tests, one must take much larger sample
sizes at the lower levels. This quickly becomes time-wise
prohibitive.

If higher-level tests are problematic, why not just use
one level 7 One-level tests do not test the local behav-
ior of generators as well as higher-level tests. Some se-
quences have good properties when we take the average
over the whole sequence, but not when we look at very
short subsequences. As an illustration, consider the (ex-
treme) example of a generator producing the values ¢/2%!,
i =1,2,...,2%" — 1, in that order. A uniformity test
over the whole sequence will give a perfect adjustment.
In fact, the adjustment will be too good, giving what is
called super-uniformity (Stephens 1986b). On the other
hand, uniformity tests over disjoint shorter subsequences
will give terribly bad adjustments. So, one-level tests are
not always appropriate, and two-level tests seem to offer
a good compromise.

3.2. Standard and More Stringent Tests

Knuth (1981) describes a set of tests which have been
considered for a while as “the standard tests” for test-
ing random number generators. Arguing that those so-
called standard tests were not sufficiently discriminatory,
i.e., that many “bad” generators passed most of the tests,
Marsaglia (1985) proposed a new set of more stringent
tests. Indeed, sophisticated applications like probabilis-
tic computational geometry, probabilistic combinatorial
algorithms, design of statistical tests, and so on, often
require generators with excellent high-dimensional struc-
tures. Marsaglia argued that for such classes of applica-
tions, simple generators (e.g., LCG, Tausworthe, GFSR,
etc.) were not good enough, and advocated combining
generators with different (incompatible) algebraic struc-
tures.

3.3. The Nearest Pair

We now give an example of a test, based on a sugges-
tion of Ripley (1983), which most LCG’s currently in use
would certainly fail. We call it the nearest-pair test. It
goes as follows. Generate n points in the t-dimensional
hypercube (0, 1)*, each one using ¢ successive values pro-
duced by the generator. Among those n points, find the
nearest pair of points and let D be the (Euclidean) dis-
tance between them. For large n, under Ho, the random
variable T = n2D'/2 is approximately exponential with
mean 1/V;, where V. is the volume of a t-dimensional unit

sphere. For a two-level test, one generates N indepen-
dent values of T' and compare their empirical distribution
with that of an exponential. Note that the larger N is,
the larger » must be, because the exponential distribu-
tion is only the asymptotic law as n — oo, and a larger
N permits one to detect the lack of fit in that approxima-
tion. Also, the approximation gets worse as t increases,
which means that one must then decrease N or increase n.
Finally, increasing n gets very costly in high dimensions
because finding the nearest pair is more time-consuming.
Numerical results for that test are given in the next sec-
tion.

3.4. A Vicious Circle

Bickel and Breiman (1983) have proposed a goodness-
of-fit test for multidimensional densities, which could be
applied here to test t-dimensional uniformity. It is some-
what related to the nearest pair test and goes as follows.
Generate n points in (0,1)" as above, and for each point
i, compute the distance R; to the nearest other point
and let W; = exp(—nV;), where V; is the volume of a t-
dimensional sphere of radius R;. Construct the empirical
distribution of Wy, ..., W,, and compare it to the appro-
priate theoretical distribution under Ho. That test looks
more powerful than the nearest pair test, because it uses
more information. For the theoretical distribution under
Ho, one can show that for each i, W, is approximately (for
large n) U(0,1). The difficulty, however, is that all those
W.’s are correlated. A measure of deviation of the W,’s
from uniformity is

T= E(W(-) —i/n)?,

1=1

where W(y),..., W(yn) are the W.’s sorted in increasing or-
der. Bickel and Breiman show that as n — oo, T con-
verges in law to fol Z%(t)dt, where Z is a Gaussian process
with mean 0 and a complicated covariance function (see
their Equation 5.13). Computing the distribution func-
tion of T under Hp is a challenging task and it seems
that currently, the best way for estimating that theoreti-
cal distribution is by Monte Carlo simulation. But which
generator should we use for that 7 We get into a vicious
circle, because what we want to test is precisely whether
the random number generators are able to reproduce the
right distribution function for T

Marsaglia (1985) also proposes tests for which the the-
oretical distribution is unknown (e.g., the parking lot test)
and suggests comparing the empirical distribution of a
generator to be tested with that of a “good” generator.
Again, we are caught into the same vicious circle: which
one is the good one 7 In practice, a reasonable (heuristic)
compromise could be to estimate the theoretical distribu-
tion with many different types of (supposedly good) ran-
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Table 1: The selected statistical tests.

T1.  Poker (N = 1000, n = 10*, d =16, k = 12).
T2. Runs Up (N = 1000, n = 10°).
T3.  OPSO (N =100,n =2*', r =0, b=10).
T4.  OPSO (N =100,n = 22", r =15, b=10).
T5. OPSO (N =100,n =2%% 7 =0, b=11).
T6. OPSO (N =100,n =2%2, + =15, b=11).
T7. Birthday spacings (N = 100, n = 100, m = 5000, d = 2 x 10°).
T8. Nearest Pair (N = 100, » = 10°, t = 4).
T9. Nearest Pair (N =20, n = 10°, t = 6).
T10. Nearest Pair (N = 20, n = 50000, t = 9).
Table 2: The selected generators.
Gl. LCG with m =2% —1 and a = 16807.
G2. LCG with m = 2% — 1 and a = 630360016.
G3. LCG with m = 2% — 1 and a = 742938285.
G4. CSD generator of Sherif and Dear (1990).
G5. Combined generator in Fig. 3 of L’Ecuyer (1988).
G6. Combined Tausworthe generator G1 of Tezuka and L’Ecuyer (1991).
G7. Twisted GFSR with (r,s,p) = (25,7,32).
G8. Subtract-with-borrow generator with (b,r,s, L) = (2% — 5,43,22,1).

dom number generators. If the results agree, it certainly
improves our confidence that this is the right distribution.

3.5. Other tests

Besides the tests described in Iknuth (1981) and in
Marsaglia (1985), other statistical tests for random num-
ber generators are proposed in Yuen (1977), Solomon and
Stephens (1983), Marsaglia and Tsay (1985), Stephens
(1986b), Maurer (1992), Ugrin-Sparac (1991), Matsumoto
and Kurita (1992), and Dalle Molle, Hinich, and Morrice
(1992). The latter paper proposes some tests based on the
Fourier transform of high order cumulant functions, and
preliminary investigations suggest that these tests are very
powerful.

4. SOME STATISTICAL TEST RESULTS

As an illustration, we have selected 10 statistical tests,
and applied them to 8 popular or recently proposed ran-
dom number generators. All tests are two-level, with a
KS test at the second level. For each test, n, N, and &,
are as defined in the previous section. We now describe
briefly the tests that we have selected. For the (simpli-
fied) Poker test (Knuth 1981), generate k integers uni-
formly from {0,...,d — 1}, and compute the number r of
distinct values. Repeat n times and compare the distribu-
tion of those n values of r with the theoretical distribution
via a chi-squared test. For the runs up test, generate a

sequence of n values in (0,1), compute the number of in-
creasing subsequences of each length within that sequence,
and compare that with the theoretical distribution using a
chi-squared (Knuth 1981). The OPSO (Overlapping Pairs
Sparse Occupancy) test is described in Marsaglia (1985).
Take n overlapping pairs of successive U(0,1) variates,
and for each pair, juxtapose the bits 7 + 1 to 7 + b of
the binary expansion of each variate, to obtain a 2b-bit
number. Compute the number of distinct 2b-bit numbers
thus obtained. The birthday spacings test is also from
Marsaglia (1985): generate m integers uniformly from the
set {1,...,d}, sort them in increasing order, compute the
spacings I;41 — I, between the successive (sorted) values,
and the number Y of spacing values which appear more
than once. Compute n independent values of ¥ and com-
pare their distribution with the Poisson distribution via a
chi-squared. Finally, the Nearest pair test was described
in the previous section.

We selected the 10 tests defined in Table 1, and applied
them to the 8 generators described in Table 2. The gener-
ators G1 to G3 are recommended respectively by Brat-
ley, Fox, and Schrage (1987), Law and Kelton (1991),
and Fishman and Moore (1986). G7 is proposed by
Matsumoto and Kurita (1992), while G8 is proposed by
Marsaglia and Zaman (1991) and further recommended
by James (1990).

Table 3 gives the descriptive level 6, for each test-
generator pair. For each generator, the different tests were
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Table 3: Descriptive Levels é,

G1 G2 G3 G4 G5 G6 G7 G8
T1 .3072 L7752 .2208 .5122 .1317 | .0051 | .1719 .0038
T2 .4650 .9565 .9763 .0750 .5754 | .8456 | .9913 .6251
T3 .0096 5.9E-5 7.7E-6 < E-15 | .8730 | .9717 | .2072 .0298
T4 2.0E-5 3.0E-5 6.1E-6 < E-15 | .9420 | .0329 | .1625 .1877
TS 7.5E-5 < E-15 | < E-16 | < E-15 | .3355 | .1165 | .5780 .9341
T6 1.2E-4 < E-15 | < E-15 < E-15 | .4025 | .3666 | .3974 .9101
T7 < E-15 | < E-156 | 7.8E-16 | < E-15 | .2264 | .7144 | .9018 < E-15
T8 < E-15 | < E-15 | < E-15 < E-15 | .6955 | .0470 | 2.4E-8 | .2075
T9 6.1E-15 | 1.5E-11 | < E-15 .5745 .3463 | .6440 | .0944 .4833
T10 | 1.1E-7 2.1E-13 | 1.1E-6 .5177 .4931 | .9526 | .4045 .2768
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performed using disjoint (“independent”) subsequences.
The results should be shocking to naive LCG users: those
generators fail not only the nearest pair test, but most of
the tests. CSD also fails miserably. The other generators,
G5 to G8, behave reasonably well, except for the recently
recommended SWB generator G8, which fails the birthday
spacings test, and the twisted GFSR, which fails one of
the nearest pair tests. G6 also has a few suspicious values.
Overall, the combined generators (G5 and G6) are the
best performers.

The fact that all the LCG’s fail the nearest pair tests is
not surprising. Indeed, because of their lattice structure,
the distance between the nearest points is bounded below
by the length of the shortest vector in the lattice. In ¢
dimensions, if the unit cell volume is 1/m and the Beyer
quotient is near one, the length of that shortest vector
is approximately (l/m)l/‘. Then, for large n and t, the
statistic T defined in Section 3.3 cannot take values as
small as expected. This was pointed out by Ripley (1983).
One interesting aspect of this is that generators with very
small Beyer quotient can (possibly) do better with respect
to this test, because they have a smaller lower bound. So,
having a small Beyer quotient is not necessarily bad for
all situations. There are applications for which it could
actually be better! To a certain extent, this goes against
some well incrusted folklore.

5. CONCLUSION AND PRACTICAL IMPLI-
CATIONS

We have seen that some previously “recommended”
and heavily used random number generators fail severely
some statistical tests. Is that really disastrous 7 Of course,
that depends on the target application. People often ask
for examples of simulation models where using one of those
generators would produce wrong results. Most likely, the
commonly used LCG’s with moduli near 2% perform well
enough when simulating typical queueing network models.

However, one can easily construct examples, based on the
tests that the generators fail, for which the generators
actually produce completely wrong results. For example,
if our aim is to estimate the distribution function of the
statistic T in the test of Bickel and Breiman (Section 3.4),
a standard LCG is certainly not appropriate.

Statistical tests are far from being clean cut testing
tools. Because any generator has finite period, almost any
good test, if run long enough, will eventually detect regu-
larity and reject the generator. So, how can we be satisfied
with empirical test results ? A reasonable practical view
here is to restrict ourselves to tests that we can practically
run on a computer. For example, if a test needs 10 mil-
lion years of CPU time on a Cray-2, we don’t care about
its eventual results. However, we would like the gener-
ator to pass all known tests which can run in, say, less
than a few weeks, assuming that the generator’s structure
is unknown to the test builder and only the output val-
ues u, are observed. But even this is not easy to achieve
with efficient generators. If the generator is a LCG, for
example, there exists efficient algorithms which can find
out the modulus and multiplier only from the output val-
ues, and guess the following values (Boyar 1989). From
that, it is easy to design a test that the LCG will fail.
Perhaps asking a generator to pass all such tests is asking
too much ? Well, that depends on the application. In
cryptology, for example, one needs generators which are
(practically) unpredictable in a specific sense (L’Ecuyer
and Proulx 1989). Such generators should pass all reason-
able statistical tests, but their current limitation is that
they are not fast enough for simulation applications. Re-
search is still under way.
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