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ABSTRACT

We have been concerned with the problem of specifying
simulation input distributions for well over a dozen
years. Over this time our attitudes and understanding of
this problem have changed dramatically, and indeed con-
tinue to change at this ime. The purpose of the Pro-
ceedings paper is to record the more philosophical as-
pects of our current thinking. We intend the conference
talk to focus more on the practical topics that depend
upon the material presented below.

1 INTRODUCTION
CEPTS

AND GENERAL CON-

Developing a validated simulation model (Figure 1) en-
tails three basic entities: the real-world system under
consideration, a theoretical model of the system, and a
computer implementation of the model. The activity of
deriving the theoretical model from the real world system
can be referred to as simulation modeling, and the activ-
ity whereby the computer implementation is derived can
be referred to as simulation programming. The figure
also shows the basic checks of verification and valida-
tion that are applied in the development of a simulation
model. We shall assume that the concept of model valid-
ity is well-established in the reader’s mind, and recom-
mend, for example, the tutorial by Robert G. Sargent in
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Figure 1: Overview of Simulation Model Development
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this volume if refreshment is required.

One of the primary reasons for using simulation is
that the model of the real-world system is too compli-
cated for study using analytical methods. Major sources
of complexity are the components of the model that
“drive,” or are inputs to, the logic of the model (the rea-
sons that these components complicate the model will
shortly become apparent). Examples of such inputs in-
clude arrivals of orders to a job shop, times between ar-
rivals to a service facility, imes between machine break-
downs, etc. Without loss of generality we can represent
an “input” in the real-world using the notation X = (X,
X3, ...}, where the subscripts merely denote the time-or-
dered appearance of values. (Without loss of generality
we have assumed that the process is discrete-time rather
than continuous-time.) In most cases, there will be a
corresponding representation of the input in the theoreti-
cal model, denoted X = (X1, X>2,...}, as well as an im-
plementation of X, denoted Gen_X, in the simulation
program; see Figure 2. At the most basic level, this tu-
torial is concerned with specifying appropriate representa-
tions X, whereas the process of creating an appropriate
implementation Gen_X is discussed in the review by Luc
Devroye in this volume.
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Figure 2: Role of Input Distributions
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Typically, an X process is taken to be a stochastic
process (i.e., there are some random components). The
fundamental assumption that we shall make is that mod-
eling X by an X that is stochastic is not inherently
wrong; that is, the mere fact that X is stochastic does
not immediately and completely invalidate our simula-
tion model. Part of deriving a simulation model thus
becomes determining an appropriate stochastic process
model X for X. A fundamental choice that has to be
made in modeling X is whether the model should be a
multivariate or univariate stochastic process. (We are
careful to indicate that assumptions are related to the
models of the process and not to the process itself.) For
example, a model of times between customer arrivals
would typically be considered to be univariate since there
is just the one value of interest. A model of arrivals of
orders to a job shop, on the other hand, might be multi-
variate since the time of the order arrival as well as num-
bers of different products to be produced might be in-
cluded in each X (see below). Note that in some cases
we might be able to separate what appears to be a multi-
variate process into separate univariate (marginal) pro-
cesses (such separation makes sense only when the com-
ponents can be assumed to be independent of each other).
The presence or lack of independence can arise in a num-
ber of ways for a process X. Consider the arrival of or-
ders to the job shop. Let X = {ik, Ak, Bk....) where ik
is the time of order arrival, A is the desired number of
the first product, By is the desired number of the second
product, etc. For a specific order, the numbers of prod-
ucts could be independent of each other, or could be cor-
related (e.g., a high value of A¢ might typically be ac-
companied by a high value of By). Further, there could
be relationships between the numbers found on subse-
quent orders (e.g., for a single product a large amount on
an order could be followed by smaller numbers on subse-
quent orders). The time of order arrivals fx could be as
simple as an integer period number or could represent a
stochastic order-arrival time. The times between subse-
quent arrivals could be independent of each other or re-
lated (e.g., five orders arrive per month but at random
points in the month).

Regardless of whether X is univariate or multivariate,
we must specify the probability distribution of it,
namely Fffk () = Pr{Xg <t). A significant simplifica-
tion can occur both in notation and model complexity if
the index does not matter, so that the X variables are
taken to be identically distributed with Fi (¢) = Fg, (1)
for all k. The model can be simplified even further if the
X ¢ variables can be assumed to be independent of each
other. When both of these conditions hold, the process
is called /ID (independent and identically distributed).
More is known about IID processes than any other type
of process.

[Real-World Process | <€——

Sampling g)
PV AV 2 BV 2V B S JF 2V & &0 &b JF ¥ JF &F 47 4F 2 4 4 «\
(4 . / 8
¢+ Available Resources &
] y P 2
" [Prior / ” >
/ . Theory Data / 4 1=
¢/ [Experiencel ' 2EIXE
/ ] EERTEN Bt
""’[’11” ”a”Ll”J -% E >
Y Modeling Strategy §§
<
L
Model |<€ o
<

Figure 3: Modeling Input Distributions

An overview of the activity of modeling a real-world
process is shown in Figure 3. An analyst will use gen-
eral knowledge, relevant theory, and collected data (if
available) as inputs to a modeling strategy that produces
a model of the process. The phrase “modeling strategy”
has been used to emphasize that the activity is typically
more involved than application of a single statistical
technique, and further, a good strategy may conditionally
apply disparate methods. The checks shown in the figure
address assessing model validity directly and indirectly.
The (indirect) reasonableness assessment addresses the
question of how well the model represents the data or
other prior knowledge and is relatively easy to accom-
plish in practice. The (direct) validity assessment ad-
dresses the question of whether the model is a reasonable
representation of reality. It is virtually impossible to ac-
complish this direct assessment in practice.

2 THE RELATIONSHIP BETWEEN INPUT
MODELING AND OVERALL MODEL VA-
LIDITY

It is important to emphasize that the overall goal in
simulation modeling is to provide a model that is valid
for a given context. The impact of the choice of a model
X upon the overall simulation validity may range from
crucial to virtual irrelevance (depending upon the system
under consideration) and there is no definitive manner to
ascertain it without application of formal validation
methods. On occasion it has been suggested that a rough
sensitivity analysis can be used to judge the severity of
the impact. The logic of the analysis can be paraphrased
as “try a number of representations and if the simulation
results do not vary significantly, then the choice is not
important.” The fatal flaw in this logic is that the lack
of variation does not establish the validity of any of the
altemmatives. (The logic does have its uses, but only to-
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ward the end of the simulation-development activity:
once a completed model has been validated with a partic-
ular model X, then a simpler form of X could be substi-
tuted for efficiency reasons, provided it does not substan-
tially change the model results.) Because, in general, we
don’t know a priori the magnitude of the impact of the
choice of a model X upon the overall simulation valid-
ity, we recommend the conservative (paranoid) approach
of assuming that the impact is large. This implies that
we should always attempt to create the most valid model
X of X possible.

3 THE DIFFICULTY IN USING CLASSICAL
STATISTICAL TECHNIQUES TO ASSESS
INPUT MODEL VALIDITY

One issue arises when we consider what it means for a
model X of a process X to be a valid representation.
Heretofore we have not assumed that the Xy variables
were themselves random, but rather we have assumed
that it is not inappropriate for us to model them in that
manner. Many simulation authorities have not made
this distinction, and indeed assume that there is a true
distribution function Fy, (¢). For these authors, a pri-
mary method of assessing the model’s validity is to use
methods of classical statistics that are designed to test the
closeness of theoretical and fitted models. In essence, for
these authors there is no distinction between the direct
and indirect validity assessments shown in Figure 3. We
do not believe that this logic can be supported in a simu-
lation context. Figure 4 represents the standard applica-
ton of a goodness-of-fit test in classical statistics. An
idealized application of such a test begins with a hypoth-
esis of the form of the distribution function (e.g., expo-
nendal). A sampling plan is designed and carried out
that produces a sample. Estimation procedures can be
applied if the parameters of the distribution function are
not known (e.g., specify the mean of the hypothesized
exponential distribution). A formal goodness-of-fit test
then tests whether the true underlying distribution is the
hypothesized one by assessing the reasonableness of an
assertion that the specified distribution could have pro-
duced the observed data. There are three problems with
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Figure 4: Goodness-of-Fit Testing

the use of such a test in a simulation context:
1. A simulationist will typically not know the form

of the distribution function, but rather, might de-
duce the form from the data, which violates the va-
lidity of the test. Although much research has been
performed on the use of goodness-of-fit tests, little
has been done on how well these tests work when
the form of the distribution is not known. There is
a smaller body of knowledge on a related issue of
selecting from a small group of candidates; that is,
if we know that the form is one of a small number
(typically two or three) of distributions, how can
we determine which is the most likely parent?

. Not only do we not assume knowledge of the form

of the distribution, we are not necessarily assuming
that reality is inherently stochastic. This problem
is indicative of a more general difference between
the aims of goodness-of-fit testing and the activity
of modeling simulation input processes. Even if
we do assume that reality is inherently stochastic,
it is unlikely that we can deduce the true form of
the distribution from the data. Further, to a large
extent we are not interested in determining the ex-
act form of the distribution function as we are in
determining a form that provides a good approxima-
tion of it for purposes of producing useful input to
the simulation via Gen _X.

. Even when appropriate assumptions are made, the

test does not necessarily give us the information we
desire. This point can be demonstrated by consider-
ing the following scenario. Suppose that X is an
IID process and further has a known distribution
function F(f). Suppose further that we were to ob-
serve and record with complete accuracy n observa-
tions of X. Due to the properties of random sam-
pling, the recorded values may not “appear” to be
distributed according to F(r). Simply because of
the randomness inherent in the data and the nature
of test procedures, if we set the so-called level of
the test at any value a, then 100a% of the time
the test would indicate that we should reject the true
hypothesis. The difficulty for the simulationist
lies not in the rejection of the true hypothesis as
much as the lack of any recommendation on how to
then model the process.
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4 THE DIFFICULTY IN EMPLOYING OVER-
ALL SIMULATION VALIDATION TECH-
NIQUES TO THE PROBLEM OF ASSESS-
ING INPUT MODEL VALIDITY

Formal and informal approaches for overall simulation
model validation have been proposed (we again refer the
interested reader to the tutorial by Robert G. Sargent in
this volume). In either case, the general concept is to
compare the “output” of the simulation model with the
“output” or expectation of *“output” from the real-world
system. The unavailability of historical system data
clearly precludes the application of any formal compara-
tive method. When historical data are available, it is
still difficult to compare formally the outputs due to
their nature. Because the output data are correlated and
not IID, most formal statistical comparative techniques
are not directly applicable. Further, techniques that can
be applied to the correlated data are not as powerful in de-
tecting gross discrepancies as are the corresponding
methods for IID data. A commonly used technique that
increases our ability to detect gross discrepancies for cor-
related data is to compare the outputs produced from the
real-world system with those produced when the model is
driven with the historical input data. Although this
technique allows for validation of the simulation logic, it
precludes any validation of the models of the input pro-
cesses. When the simulation program is driven by the
input models, and we compare its results to historical
data, detecting even gross discrepancies between the
model and real-world outputs is difficult due to the differ-
ences in driving forces. Even when gross discrepancies
are not found, there is no guarantee that the input models
are valid. The lack of gross discrepancies in the outputs
may be attributable to our inability to detect the errors,
the masking effect of the simulation logic, the limited
amount or quality of historical data against which to
compare, or the randomness inherent in the simulation
outputs themselves. Our conclusion is that formal vali-
dation techniques can detect only a portion of invalid in-
put models, and we should therefore not rely upon them
to validate the input models.

5 FURTHER COMPLICATIONS IN MODEL-
ING PROCESSES

Classical statistical methods assume that we have a rep-
resentative sample of the process to use in specifying our
model. This is certainly not true in all simulation pro-
jects. Even when data are available, the situation can
differ from what is assumed in classical statistics; see
Figure 5. Typically, the assumption in classical statis-
tics is that data are collected in a planned and systematic
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Figure 5: The Reality of Sampling

manner after the analysis method has been chosen. In a
simulation study, it is quite common to make use of data
that were previously collected for purposes other than the
determination of a simulation model. This situation can
lead to a number of annoyances:
« Data can be grouped into intervals
« Data can be recorded with insufficient precision,
perhaps even rounded to the closest integer even
though the observations were real-valued
e Data can be full of obviously erroneous values,
simply because the recorder did not anticipate the
need for highly accurate data
« Data can be contaminated or mixed with observa-
tions of other processes
« Data can be representative values from a completely
different process
Although not all of these annoyances will occur with
each data set in a simulation study, they occur with a fre-
quency that has led us to be slightly suspicious of the
validity of any data set that is derived from historical
records. Our skepticism concerning the accuracy and rep-
resentativeness of data leads us to a slightly paradoxical
position: Although a data sample is the best evidence
available for use in specifying and evaluating a proposed
model, it should not be taken too seriously. The impact
of this conclusion is a mistrust of model-selection
strategies that are overly reliant upon “clean” samples.

6 FINAL THOUGHTS

We can summarize the material presented so far in the
following manner: We believe that simulationists
should strive to create the most valid model of a process
X that is possible, in the interest of overall model valid-
ity. It is not possible to perform a direct validation
check on a proposed model using classical statistical
techniques, and the results of validation procedures ap-
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plied to the entire simulation model may not indicate
problems with models of input processes. Data available
to us can suffer from inaccuracies and can *“look” different
from the process that produced them. What modeling
strategy should a simulationist employ? A general rec-
ommendation is that the strategy that produces from its
generator Gen_X values that most closely resemble the
values that can be produced by the real-world process.
We believe for the simulation context that differences in
modeled and true process values are more important than
differences in modeled and true process distribution func-
tions; we take the situation to be close to that of regres-
sion analysis where we wish to know how closely an es-
timate is to the true value. The conference tutorial shall
consist to a large extent of practical advice on what
strategies to employ, with recommendations based upon
research findings and practical experience.
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