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ABSTRACT

We present a brief survey of recent developments in
uniform pseudorandom number generation, with an
emphasis on nonlinear congruential methods, and we
establish some new results on the explicit inversive
congruential method. Related developments in the
area of uniform pseudorandom vector generation are
also mentioned.

1 INTRODUCTION

A crucial task in the application of simulation meth-
ods is the generation of random samples that simu-
late a sequence of i.1.d. random variables sufficiently
well. In practice, random samples are generated by
a deterministic algorithm, and in this case we speak
of pseudorandom numbers. We concentrate on the
important case where the target distribution is the
uniform distribution on the interval I = [0, 1], 1.e., on
the case of uniform pseudorandom numbers. An ex-
pository account of methods for nonuniform random
variate generation can be found in the excellent book
of Devroye (1986).

Classical methods for the generation of uniform
pseudorandom numbers, such as the linear congruen-
tial method and shift-register methods, tend to pro-
duce pseudorandom numbers with too much intrinsic
structure. Recent research has led to the design and
the analysis of a family of alternative methods that
show great promise. These methods will be at the
center of our interest. Further recent work on uni-
form pseudorandom numbers is surveyed in the ar-
ticles of James (1990), L’Ecuyer (1990), and Nieder-
reiter (1991) and in the monograph of Niederreiter
(1992). Among the interesting new contributions to
this area that are not covered in the present paper be-
cause of space limitations, we point out in particular
the add-and-carry generator of Marsaglia and Zaman
(1991) and the work on various types of combined
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generators by Couture, L’Ecuyer, and Tezuka (1992)
and L’Ecuyer and Tezuka (1991).

In Section 2 we briefly review the structural and
statistical deficiencies of linear congruential and shift-
register pseudorandom numbers. The family of non-
linear congruential methods, which includes the in-
versive congruential method and the explicit inversive
congruential method, is discussed in Section 3, where
one can also find some new results on explicit inver-
sive congruential pseudorandom numbers. In Section
4 we turn to uniform pseudorandom vectors, and in
Section 5 we draw some conclusions.

2 CLASSICAL METHODS AND THEIR
DEFICIENCIES

2.1 Linear Congruential Method

In this method we choose a large integer M and then
generate a sequence Yo, Yy, ... of integers in Zy =
{0,1,..., M — 1} by the recursion

Yn4+1 = ayn + cmod M forn >0,

where a and c¢ are suitable integers. The ln-
ear congruential pseudorandom numbers (LCPRN)
Zg,Ty,... are obtained by the normalization z, =
Yn/M for n > 0. The least period length per(zn) of
the sequence of z,, satisfies per(z,) < M, and condi-
tions that guarantee per(z,) = M are known.

A detailed description of the structural and statis-
tical properties of LCPRN can be found in Chapter
3 of Knuth (1981). Since the deficiencies of the linear
congruential method were already discussed at length
in Section 7.3 of Niederreiter (1992), we repeat here
only the salient points. A structural deficiency is the
unfavorable lattice structure, which results from the
fact that all points ¥n = (Yn,Yn+1,---»Ynts—1) €
Z*,n=0,1,..., lie on a coarse grid or on a union of
relatively few such grids (a grid is a shifted sublattice
of the s-dimensional integer lattice Z*). To describe
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an important statistical deficiency of LCPRN, we de-
fine for any N points to,ty,...,ty—1 € I* = [0,1]°
their discrepancy Dy by

Dy = sup |[Kn(J) = V(JI)I,

where the supremum is extended over all subintervals
J of I*, Kn(J) is N™! times the number of 0 < n <
N — 1 with t, € J, and V(J) denotes the volume of
J. If zg,z1,...1s asequence of LCPRN and s > 21isa
given dimension, then we put ng) for the discrepancy
of the points

Xn = (1},,,13,,+1,...,17n+,_1)

€Er0<n<N-1 (1)

According to the law of the iterated logarithm for
the discrepancy of random points in I®, DS\’,) should
have an order of magnitude between N~!/2 and
N~=12%(loglog N)'/2, but e.g. for N = per(z,) the
order of magnitude of DE\;) is significantly smaller
for the average parameters in the linear congruential
method.

2.2 Shift-Register Methods

Shift-register pseudorandom numbers (SRPRN) are
generated from higher-order linear recurring se-
quences modulo 2 which are then transformed by var-
ious methods into uniform pseudorandom numbers,
such as the digital multistep method and the GFSR
method. It is an advantage of shift-register methods
that they yield sequences with very long periods. Dis-
advantages of SRPRN are mentioned in Section 9.2
of Niederreiter (1992). If zg,z1,... is a sequence of
SRPRN and the points x, € I*,s > 2, are defined
as in (1), then these points have strong uniformity
properties which are expressed e.g. by the “net prop-
erty” established by Niederreiter (1987). These uni-
formity properties also lead to the phenomenon that
the discrepancy of these points is, on the average,
much smaller than it should be according to the law
of the iterated logarithm for discrepancies. Thus, on
the whole, SRPRN tend to have too regular a distri-
bution in comparison with truly random numbers.

3 NONLINEAR CONGRUENTIAL METH-
ODS

3.1 General Nonlinear Congruential Meth-
ods

To overcome the deficiencies of the linear congruential
method, the general family of nonlinear congruential
methods was introduced by Eichenauer, Grothe, and

Lehn (1988). In these methods, a large prime mod-

ulus p is chosen and a sequence yg, y1, . .. of integers
in Z, is generated by the recursion
Yn+1 = f(yn) mod p for n > 0, (2)

where the function f is selected in such a way that
the sequence yg, ¥, ... is purely periodic with least
period length per(y,) = p. Then nonlinear con-
gruential pseudorandom numbers (NCPRN) are ob-
tained by setting z, = yn/p for n > 0, and we
have per(z,) = p. If Z, is identified with the fi-
nite field F, = Z/pZ of order p, then we may also
describe the y, by the uniquely determined polyno-
mial g € Fp[z] such that y, = g(n) for all n € F}, and
1 <d:=deg(g) <p—2. The case d = 1 yields a triv-
ial generator, hence it is assumed that 2 < d < p-2.

The number d plays a role in the description of
structural and statistical properties of NCPRN. It
has been shown that a sequence of NCPRN passes
the s-dimensional lattice test if and only if s < d.
Furthermore, if D;.’) denotes the discrepancy of the
points x, € I°,0 < n < p—1, in (1) obtained from
NCPRN, then

s) _ -1/2 s
Di,)_O(dp 2(logp)*) for 2 < s < d,

and as a general bound this is essentially best possi-
ble. Note that this behavior of DP’) for NCPRN is in
better accordance with the law of the iterated loga-
rithm for discrepancies than for the classical methods.
An expository account of the results above is given in
Chapter 8 of Niederreiter (1992).

3.2 Inversive Congruential Method

The inversive congruential method is a special non-
linear congruential method that has received greater
attention. The feedback function f in the recursion
(2) is now taken to be a self-map f of F, of the form
f(¢) = ac + b for all ¢ € F,, where a,b € F, are
suitable constants and where ¢ € F, is defined by
t=clifc#0andc=0if c = 0. Inversive congru-
ential pseudorandom numbers (ICPRN) are derived
by putting z, = yn/p for n > 0. This method was
introduced by Eichenauer and Lehn (1986). A char-
acterization of those a, b € F,, which yield per(z,) = p
was given by Flahive and Niederreiter (1992).
ICPRN pass the s-dimensional lattice test for all
s < (p+1)/2, and in the case p = 3 mod 4 for
all s < (p+ 3)/2. A strong nonlinearity property
of ICPRN was established by Eichenauer-Herrmann
(1991); compare with Theorem 1 below for an anal-
ogous result for a related method. The discrepancy
D,(,’) of the points x, € I*,0 < n < p-1,in (1) ob-
tained from ICPRN satisfies DY) = O(p~1/2(log p)*),
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and D,(,’) is on the average at least of the order of mag-
nitude p~'/2 for all s > 2. This accords well with the
law of the iterated logarithm for discrepancies. De-
tailed surveys of the inversive congruential method
can be found in Eichenauer-Herrmann (1992a) and
in Section 8.2 of Niederreiter (1992).

3.3 Explicit Inversive Congruential Method

A variant of the inversive congruential method with
very attractive features was recently introduced by
Eichenauer-Herrmann (1992b). In this ezplicit inver-
sive congruential method we choose a,b € F, with
a # 0 and define

yn=an+b forn>0, (3)

where € € F, is defined as in Section 3.2. Then ez-
plicit inversive congruential pseudorandom numbers
(EICPRN) are obtained by setting z, = y,/p for
n > 0. This method may also be viewed as a nonlin-
ear congruential method (2) with feedback function
f(c) =¢c+afor c € F,. It is clear that the sequence
zo,Z1,...1s purely periodic with per(z,) = p. Since
the y, are also given by y, = (an+ b)?~2 for n > 0,
we have d = deg(g) = p — 2, and so a sequence of
EICPRN passes the s-dimensional lattice test exactly
for all s < p— 2, which is the optimal behavior under
the lattice test.

We now establish an analog of the strong non-
linearity property of ICPRN shown by Eichenauer-
Herrmann (1991). We consider the general frame-
work of parallel streams of sequences of y,, generated
by the formula (3). Thus, for a1,...,a,,b1,...,b, €
F, with a; #0for 1 <7 < s we put

yf,i):ain+bg forl<i<sandn>0. (4)
Let F, be the s-dimensional affine space over Fy.

THEOREM 1. If bha,,...,b,a, € F, are distinct,
then every hyperplane in F, contains at most s of
.,ygf)) € F;,0<n<p—1, wih

yf,l) . .yg.’) # 0. If the hyperplane passes through the
origin of F!, then it contains at most s — 1 of these
points.

the points (yg.l), ..

Proof.  Let the hyperplane H in F} be given
by Z;=1Cjzj = ¢o with ¢o,...,¢, € F, and
(c1,...,¢s) # 0. Let W = Fp, \ {-biay,...,—ba,}.
Then for n € W we have (y,(,l),...,yffj) € H if and
only if
3
Cj

— = ¢p.
o a,jn-}-bj

By clearing denominators, this is equivalent to

3 s

Z cj H(am + b;)
i=t e

= ¢y H(ain + b,’).
i=1

For ¢ # 0 this is a polynomial equation of degree s
for n which has at most s solutions. If ¢y = 0, then
from the above we get the polynomial equation

ch H(aiz + b)) =0.
i=1 =t
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The left-hand side has degree < s — 1, thus it suffices
to show that the left-hand side is not the zero poly-
nomial. If this were the case, then by considering a
fixed k with ¢ # 0 and substituting ¢ = —b,a; we
would obtain

0 = c& H(—aibkﬁk +b;)

=1

1Ek
S 3

= H a; [](=beax + biai) #0,
ik

a contradiction. O
Eichenauer-Herrmann (1992b) studied the discrep-
ancy of the points

Xn :(In+n,yrn+n2w~-;1n+n.)€ I'o<n<p-1,

obtained from EICPRN, where 0 = n; < ny < ...<
n, < p are integers. We consider, more generally,

parallel streams of EICPRN by letting the yg) be as
in (4) and putting P = yfli)/p for 1 < ¢ < s and
n>0. Forl1 <N <plet D}\’,) be the discrepancy of
the points

vp=(2,. 2 er,0<n<N-1

We first consider N = p, i.e., the case of the full
period which is trivial for s = 1.

THEOREM 2. Ifbia,,...,b,a, € Fy are distinct and
2 < s < p, then for p > 5 we have

1 2s—2 s+1
(s) _ — ) e 2Ty,
byl ( p)+<p1/2+ p)
4 64\’
(—;logp+1.38+%) .
™ P
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Proof. We use the general method and the notation
in the proof of Theorem 8.7 in Niederreiter (1992).
For h = (hy,..., hy) € CI(p) put

E(h)= ) «x (Zh y(’)) .
neF, i=1
If W is as in the proof of Theorem 1, then

IE()| < s+|2x(\2hi—a.~n+bi>|

neWw i=1

=s+l 2 x ()

R(n)#0

with the rational function
Qlz) <~ hi
R(z) ~ ; a;z +b;

It is easily seen that Q/R is not of the form A? — A
with a rational function A over the algebraic closure
of Fp. Thus, it follows from Theorem 2 in Moreno
and Moreno (1991) that

|E(h)| < (25 — 2)p*? + s + 1. (5)

Since this bound is independent of h € Cj(p),
we can apply Corollary 3.11 in Niederreiter (1992).
For a prime modulus p > 5 the constants in this
corollary can be slightly improved by going back to
Cochrane(1987), and this yields the desired result. O

THEOREM 3. Ifbiay,...,b,a, € F, are distinct and
1<s<p,then forp>5and 1 < N < p we have

, 1
DY < 1-(1-2)
P

2s—2  s+1 0.6
<—I;1/_2+—P—> (——logp+l38+—p-

S (9112 11 0.38 %‘.‘)
+ N(?p -i—l)(7r2 ogp+0.38+ ’

4 0.64\°
(;.3 logp+1.38 + _p—> .

Proof. We proceed as in the proof of Theorem 2. For
h = (hl)"')h.’) e C:(p) pUt‘

N-1
En(h) =) x(wn)
n=0
with w, = $30_, hiyt) for n > 0. Then
p—1 N-1 1 p-1
En(h) =3 x(wa) 3 -3 x(uln=1))
n=0 t=0 u=0

since the sum over t is 1 for 0 < n < N —1 and 0 for
N < n < p-—1. By rearranging terms, we get

p—-1 N-
| > x(ut)|

u=1 t=0

| > x(wa+un)l. (6)

neF,

—

|En(h)| < %lE(h)l +

SRR

For 1 <u <p-1 we have

| S x(wa+un)| < s

neF,

n€Fp
R(n)#0

with Q(z)/R(z) as in the proof of Theorem 2. Again,
it is easily checked that @(z)/R(z)+ uz is not of the
form AP — A with a rational function A over the al-

gebraic closure of F),, and so it follows from Theorem
2 in Moreno and Moreno (1991) that

|3 x(wn +un)| < s(2p"? + 1),

neF,

From Cochrane (1987) we obtain

4
Fplogp + (0.38)p + 0.64.

Together with (5) and (6) this yields

|En(h)| < %((23—2)p1/2+s+1>

) 0.64
+ s(2p* 4+ 1)(——logp+0 38 + —p—)

and the proof is completed by invoking Corollary 3.11
in Niederreiter (1992). O

The bounds in Theorems 2 and 3 have the
form DY) = O(p~'*(logp)’) and D§' =
O(N~1p!/2(logp)**1), respectively, with absolute im-
plied constants. These bounds show that, under the
condition that b,@y,...,b,a, are distinct, the corre-
sponding parallel streams of EICPRN are statistically
almost independent.
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4 PSEUDORANDOM VECTOR GENERA-
TION

4.1 Matrix Method

The trend towards parallelization in simulation meth-
ods has led to the necessity of developing algorithms
for pseudorandom vector generation. We again re-
strict the attention to the uniform case, i.e., to the
task of generating k-dimensional pseudorandom vec-
tors which simulate a sequence of 1.i.d. random vec-
tors with the uniform distribution on I* as the com-
mon distribution function. Only a few methods for
uniform pseudorandom vector generation have been
developed so far.

The matriz method can be viewed as an exten-
sion of the linear congruential method. We choose
a large prime p and generate a sequence zg, 21, ... of
k-dimensional row vectors with components in F, by
starting from an initial vector zo # 0 and using the
recursion

Zn41 = 2, A mod p for n > 0,

where A is a nonsingular & x k matrix over Fj.
Then uniform pseudorandom vectors are obtained by
putting u, = p~'z, € I¥ for n > 0. We always have
per(u,) < p* — 1, and a criterion is known which
guarantees that per(u,) = p¥ — 1. The state of our
knowledge about the matrix method is summarized
in Section 10.1 of Niederreiter (1992). It should not
come as a surprise that the pseudorandom vectors
generated by this method display the same deficien-
cies as LCPRN, e.g. the unfavorable lattice structure
and too much regularity in their distribution.

4.2 Inversive Method

The inversive method is an extension of the inversive
congruential method. For a given dimension k > 2
we choose again a large prime p and we let Fy be the
finite field of order ¢ = p*. For v € F, we define
yeF,byy=y"'ify#0andy=0if y = 0. Then
we generate a sequence Yo, 71, . - - of elements of Fy by
the recursion

a1 = &7, + fforn >0,

where o,8 € F, are suitable constants. If
{B1,..., Bk} is a basis of F, over F, and Tr denotes
the trace from Fy to Fy, then we derive uniform pseu-
dorandom vectors by setting

U, = %(Tr(ﬁm), o Te(Bey)) € I* for n > 0,

By an appropriate choice of a, # € F; we can achieve
per(u,) = q. The known properties of these pseu-
dorandom vectors are discussed in Section 10.2 of
Niederreiter (1992). As is to be expected, there are
similarities with the properties of ICPRN.

5 CONCLUSIONS

For uniform pseudorandom number generation, the
explicit inversive congruential method looks like a
very promising method. It leads to optimal nonlin-
earity properties, desirable statistical independence
properties, and no coarse lattice structure. Further-
more, we can easily generate with this method a large
number of parallel streams of pseudorandom numbers
that are almost statistically independent; the corre-
sponding problem has not been solved for LCPRN.
In the area of uniform pseudorandom vector gener-
ation, further studies have to be carried out to pro-
vide a sound assessment, but on a preliminary basis
the inversive method seems preferable to the matrix
method.
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