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ABSTRACT

The contents of this paper reflect a portion of the
conference tutorial on experimental design and sim-
ulation. In this paper we primarily focus on two
level fractional factorial designs and their application
to a discrete event simulation model of semiconduc-
tor manufacturing logistics. In the tutorial we will
discuss a wider range of experimental design issues.
However, in all cases, examples will be given of their
application to the same semiconductor manufactur-
ing model.

1 INTRODUCTION

There are two basic environments in which statis-
tics are applied: one where the data are generated
by processes out of the control of the investigator
and the other where the investigator plans and hence
in that sense controls the generation of the data. In
the latter case, the investigator has some goal in
mind and plans an experiment or sequence of ex-
periments designed to take him in the direction of
that goal. This planning is, in a broad sense, exper-
imental design. In simulation the investigator has
complete control over the generation of the data so
all discussions of simulation output analysis are in
some real sense discussions about design of exper-
iments. This includes the estimation of output pa-
rameters with confidence intervals and confidence
regions, the comparison of two systems, the ranking
of multiple systems, etc.

We, however, will be concerned with what is more
commonly considered experimental design. These
are situations where one has a parametric simulation
model such that it is impossible to exhaustively ex-
plore the parameter space. Hence the relationship
between the output characteristics of the model and
the parameters must be explored using regression
type models and least squares techniques. In the
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tutorial talk we will review the basic notions of ex-
perimental design and present a number of examples
of its application. In this paper we will discuss a
single application. Hence it should not be consid-
ered a summary of the tutorial but rather a sample
of the kinds of concepts and types of examples which
will be considered.

2  DESCRIPTION OF THE MODEL

The discussion will use, as an example, a detailed,
validated model of semiconductor manufacturing lo-
gistics. The model contains on the order of one
hundred tool groups processing multiple products.
The flow is highly re-entrant, that is, jobs feed back
through sequences of the tool groups up to twenty
times. The model includes tool setup, tool break-
down and repair, preventative maintenance, rework,
test wafer send ahead, and detailed operator sched-
ules. The primary purposes of the model are to
study control rules proposed for the line [Hood et
al. 1989] and to design new lines.

For the example discussed here, the line is un-
der constant load and in a stationary state. That is,
the rate of output of good product and scrap is equal
to the rate at which orders are inputted. No portion
of the system is saturated. We are interested in the
cycle time, the time from beginning of manufacture
to completion, of one of the products.

3  DESCRIPTION OF THE EXPERIMENT

3.1

As was mentioned in section 2, interrupts for
setup, preventative maintenance, and tool repair (af-
ter failure) are explicitly modeled in the simulation.
They are all modeled in the same fashion, as highest
priority sources of work for the tool groups. The
interrupts (arrivals) are a renewal process and the
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interrupt durations (service times) are an ii.d. se-
quence of random variables. The three interrupt
processes operate independently.

These interruptions create backups of the actual
semiconductor jobs and hence, contribute to the
magnitudes of the cycle times. The purpose of the
experiment described in this paper is the examination
of the effect of these interrupt processes on the mean
cycle time.

Each interrupt process is characterized by two
distributions: one for the time between interrupts
and one for the duration of the interrupt. In this
investigation, two factors are associated with each
distribution: the mean and the distribution type.
Thus, there are a total of four factors associated with
each interrupt process and, since there are three dif-
ferent interrupt processes, there are twelve factors in
all.

The model under investigation is a model of a
planned manufacturing line. The purpose of this
study is to estimate the potential benefit, in terms of
mean cycle time reduction, in effecting changes in the
interrupt processes. Thus there is a “base” case, the
planned parameters under which the line 1s expected
to operate, and we are interested in the effect of
changes made to this base case. Hence, in contrast
to many situations in which design of experiments
is used purely for sensitivity analysis, here there is a
known specific starting state, the base case, and the
desire to identify the improvement which can be
achieved by moving to another specific state. This
will be important when alternative experimental de-
signs are considered in section 3.2.

Achieving cycle time reductions by effecting
changes in the interrupt processes is particularly at-
tractive since it involves less cost than reductions
achieved by increasing the direct resources (tools and
operators) involved in manufacturing.

The factor settings selected for the distribution
of the time between interrupts were:

e  distribution type (Factor A)
1. exponential (base case)
2. triangular (+ and - 100% of the mean)
¢ mean (Factor B)
1. base case
2. twice the base case
and for the duration of the interrupts
o  distribution type (Factor C)
1. exponential (base case)
2. triangular (+ and - 100% of the mean)

e mean (Factor D)
1. base case
2. one half the base case

The non-base case settings would be expected
to generate improvements. This is obvious in the
case of the means. In the case of the distnbution
type, one would expect a reduction in the coefficient
of variation to lead to a reduction in the mean cycle
time. The exponential distribution has a coefficient
of variation of 1, the triangular distribution selected
has a coefficient of variation of 0.41. It is often
necessary to set up the design is this way, with one
level of the factor at the base case and the other level
representing an improvement over the base case,
when using design of experiments with discrete event
simulation. This ensures that there is sufficient re-
source capacity represented in all of the experiments
in the design. Otherwise, if the factor levels represent
situations worse than the base case, then there is no
guarantee that there is sufficient resource capacity for
a steady-state result and the value of the performance
measure may be infinity!

Hence, we have an experimental situation with
12 factors, each at two levels. Now one would ex-
pect that the effect of making a change in one of
these factors would depend on the general level of
congestion in the system. The greater the level of
congestion, the larger the amount of change. Hence,
a priori, one would expect a high level of interaction
between the factors. For example, one would expect
that the improvement in the mean cycle time result-
ing from the change in a factor from the base case
would be greater if all the other factors were at the
base case than it would be if other factors had been
changed from the base case. Because we have cho-
sen one level of the factors to represent the base case
and the other level to represent an improvement over
the base case, any significant change to a factor
means there is less congestion in the manufacturing
line and any additional changes are less likely to have
as large an effect as they would when the line was
running closer to saturation.

Because of this liklihood of significant higher
order interactions we felt we had to consider resol-
ution 5 or higher designs. We considered two pos-
sibilities. The first was a resolution 5 design on all
12 factors. It would have required 256 runs and
would have left uncertainty about three way and
higher interactions. Also, we wanted to generate
replications so as to have an estimate of pure error
so this choice would have required a very large
amount of computing time. Since we were interested
in changes from the base case to a state with im-
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proved performance, we decided instead on three
separate, four factor, full factorial designs, with the
idea in mind that line engineers would focus on im-
proving the one interrupt process that improved
performance the most and then that new state would
serve as the base case for a second investigation. All
designs were created and analyzed using the IBM
software “A Graphical Statistical System” (AGSS).
For a description of this system see Lane and Welch
(1987).

The first experiment considers only the setup
process with the factors for the other processes set
at the base case. The second experiment considers
only the preventative maintenance process with
again all the factors of the other processes set at the
base case. The third experiment, in a parallel fash-
ion, considers only the failure-repair process. This
alternative design is suitable for identifying a new
state to move to from the base case state. If a base
case does not exist and the purpose of the exper-
iment is a more general sensitivity analysis, then an-
other design might be more appropriate.

3.2 The Design Chosen

Each interrupt process is represented by four
factors. As stated above one would assume, a priori,
that there are interactions between the factors. To
study the full detail of these interactions we chose a
full factorial experiment, i.e. all 16 possible combi-
nations of the four, two level factors.

The theory of 2 level designs provides a hierar-
chy of increasingly complex models leading to the
full complexity of all possible interactions. The
simplest model assumes that only the main effects
are significant. That is, it assumes that
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where R is the mean cycle time, p is the grand mean
over the experiment, «, is the coefficient associated
with the ith factor and x; = — 1 if the ith factor is at
the lower level (the base case) and x, = + 1 if the ith
factor is at the upper level. This model has five pa-
rameters and assumes there are no interactions be-
tween the factors. It assumes each factor has an
additive influence independent of the values of the
other factors.
The next simplest model assumes that

4
R=}l-+ Z alxl'*'Zﬂtjxt.Xj
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where B, is the coefficient associated with ij th two
way interaction. It assumes that the factors do
interact but only in pairs and additively. There are
six f; coefficients hence this model has 11 parame-
ters. The existence of two way (and higher) inter-
actions changes the interpretation of main effects.
The significance of interactions and the interpreta-
tion of the response variable when they exist will be
discussed in section 5. The complete model, which
has no restrictions, is

4
R=[J+ Z ;X + Zﬂux,xj

i=1 ij

+ Z Vijk Xi Xj X+ A1334 X1 X3 X3 Xg
ik

The hierarchical formulation has two advan-
tages. First, it creates a sequence of models from the
simple to the complex. Second, the components of
the models are orthogonal so the significance of the
terms can be judged independently. That is, the
significance of any single term is independent of the
model in which it is imbedded and the other terms
of that model.

However, to judge the significance of a term in
the model or to test a submodel we must have an
estimate of error. Now error estimates are of two
varieties. There are pure error estimates which come
usually from replications and (non-pure) error esti-
mates which depend upon model assumptions. Pure
error estimates are highly desirable. In simulation
applications it is always possible to get pure esti-
mates of error independent of any assumptions of
the model. These pure error estimates can then be
compared with error estimates obtained through the
fitting of a model to give a test of the goodness of fit
of the model.

To get a pure estimate of error the experimental
points were replicated using the method of batch
means. The batch sizes were chosen to be 200 ob-
servations in length based on autocorrelation func-
tions which went to zero at about 50 lags. An initial
transient of length 250 was removed. Thus we had
3 experiments each with 80 runs, the full 2¢ factorial
replicated 5 times. A sample series of length 1250
(with the initial transient) is shown in Figure 1.
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TYPICAL CYCLE TIME HISTORY
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T

Figure 1. A Cycle Time History
The sample correlation function corresponding to

this series (with the initial transient removed) is
shown in Figure 2.
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Figure 2. The Autocorrelation Function of Cycle
Time History

4 MODEL SELECTION AND DIAGNOS-
TICS

4.1 Impact on Capacity

The interrupt processes result in a reduction of the
capacity of the line by an amount which is the pro-
portion of time in the interrupted state. This pro-
portion is the mean interrupt time divided by the
mean time between interrupts. These reductions can

be used to rank the interrupt processes. They are
given below:

Setups 0.157
Preventative Maintenance 0.029
Failure - Repair 0.015

Now, as discussed in section 3.2, three inde-
pendent experiments of 80 runs each were con-
ducted. In each experiment, the effect on mean cycle
time of changes in a particular interrupt process was
investigated. The parameters of the other interrupt
processes were set at values representing the base
case. We will now discuss the results of these three
experiments, starting with model selection and diag-
nosis. Then, in section 5, the interpretation of the
selected model is discussed with emphasis on the in-
terpretation of interactions.

4.2 The Setup Process

The main effects are represented as A,B,C, and D
where

A: inter-interrupt distribution type
B: mean time between interrupts
C: interrupt distribution type

D: mean interrupt time

The two way interactions are represented by AB,
AC, AD, ..., the three way interactions by ABC,
ABD, ... , etc. The values of the main effects and
interactions are twice their corresponding coeffi-
cients. The standard t-tests on the effects gave the
95% confidence intervals indicated in Table 1.
Here, the estimate of error is the pure error estimate
given by the 64 degrees of freedom associated with
the replications. The model suggested by this table
includes the effects A, B, C, D, AB, AD, BD and
ABD. Thus, it 1s of the form

4
R=p+ Z 02X+ Bra Xy Xy + Bra X1 Xg

i=1
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This 1s a relatively complex model. The meaning of
the interaction terms is discussed in the next section.

Here, we concentrate on the problem of model
selection and diagnostics. The preceding model was
generated by choosing the effects which were indi-
cated as significant in Table 1, however the signif-
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TABLE OF COEFFICIENTS
80 OBSERVATIONS R-SQUARED = 0.94239 STANDARD ERROR = 28.214
15 VARIABLES ADJ R-SQUARED = 0.92889
0.95 CONFIDENCE LIMITS

EFFECT ESTIMATE STD ERR T STAT SIG LEVEL LOWER UPPER

A -49.732 6.3088 -7.8829 5.1861E-11 -62.346 -37.117
B -100.04 6.3088 -15.857 2.2204E-16 -112.65 -87.422
cC -18.959 6.3088 -3.0052 3.7866E-3 -31.574 -6.3449
D -145.12 6.3088 -23.003 1.3878E-16 -157.73 -132.5

AB 22.479 6.3088 3.5631 6.9870E-4 9.8643 35.0093
AC -10.43 6.3088 -1.6532 1.0319E-1 -23.044 2.1848
AD 50.286 6.3088 7.9708 3.6290E-11 37.672 62.901
BC 1.2096 6.3088 0.19173 8.4856E-1 -11.405 13.824
BD 60.795 6.3088 9.6365 4.4825E-14 48.18 73.409
CD 6.5902 6.3088 1.0446 3.0013E-1 -6.0243 19.205
ABC 12.538 6.3088 1.9874 5.1166E-2 -0.07668 25.152
ABD -25.693 6.3088 -4.0726 1.3040E-4 -38.308 -13.079
ACD -1.9588 6.3088 -0.31049 7.5720E-1 -14.573 10.656
BCD -6.1841 6.3088 -0.98023 3.3066E-1 -18.799 6.4304
ABCD 5.085 6.3088 0.80601 4.2322E-1 -7.5295 17.699

Table 1. Coefficient Estimates and Confidence Intervals

icance tests of Table 1 are only approximately valid
because there is a selection process taking place. If
one picks an effect before looking at the table and
then looks at its confidence interval, the corre-
sponding significance test is valid at the 0.05 level.
However, if one looks at the table and selects an ef-
fect whose confidence interval does not contain zero,
then the test is not valid at the 0.05 level. For ex-
ample, suppose none of the effects were significant.
Then, since there are 15 of them, one of them would
appear to be significant by chance with a probability
greater than 0.05.

To counter this selection problem, it is com-
mon to generate a probability plot of the effects and
to view them in the context of their distribution.
Then if only a few are significant they will stand out
against the distribution of the remainder which
should be normally distributed and fall approxi-
mately along a straight line when plotted on a
normal probability scale. Figure 3 shows a proba-
bility plot of the 15 effects in this case.

Such plots have to be viewed with care partic-
ularly when there is a pure estimate of error available
from the replications as in this case. If one looks at
Figure 3, one would be inclined to choose the sim-
pler model containing the effects A, B, D, AD and
BD. If these effects are removed as has been done
in Figure 4, one sees that the remaining effects lie on
a straight line indicating they are consistent with the
assumption of a normal distribution. However, the

normal distribution that they are consistent with
does not have a variance estimate which is consistent
with that obtained from the 64 degrees of freedom
associated with pure error. On Figure 4, we have
plotted the straight line of the normal distribution
which insignificant effects should have if they are
consistent with the pure error estimate.

Comparison of the plotted points and the
straight line in Figure 4 is analogous to the compar-
ison of the error estimates obtained from the lack of
fit sum of squares and the pure error sum of squares
in the usual analysis of variance table. That com-
parison is made rigorous through the standard F test.
The results of this test for the simple model were
highly significant indicating a lack of fit and, hence,
an mnadequate model. In the case of the more com-
plex model including AB and ABD, the F-test did
not indicate a lack of fit. In the case of the more
complex model, the distribution of the 7 effects not
included in the model was consistent with the
straight line in Figure 4.

A second important diagnostic test is a check
on the distribution of the residuals. The methodol-
ogy assumes that there is an error term which is
normally distributed with a constant variance. In
Figure S5, we show a set of standard graphics tests of
this assumption. The distnbution of the residuals is
compared with a fitted normal distribution in
histogram-density, cdf and probability plots; and the
residuals are plotted against the fitted values. Often
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the variance of the residuals increases with the level
of the response. There is only a slight indication of
that in this case, not enough to consider any reme-
dial steps. For a discussion of more intensive testing
of this assumption of a common variance see Hood
and Welch (1990).

Hence, we accept the model suggested by Table
1 and given by equation (1). Remember, the coeffi-
cient values in equation (1) are one-half the effect
estimates of Table 1.

4.3 The Preventative Maintenance Process

In the case of the preventative maintenance inter-
rupt process the standard t-tests on the effects indi-
cate that only the main effects B and D are
significant. The estimate of the B effect is -27 and
the D effect is -79. Hence the response equation is

R=p—13.5x, — 39.5x,

where [ is the estimate of the grand mean.

4.4 The Failure-Repair Process

The analysis of the data from the failure-repair
interrupt process generates a model with only one
effect, the main effect D. The estimate of D is -34.
Hence, the response equation is

R=p—17x,

5 MODEL INTERPRETATIONS, INTER-
PRETATION OF INTERACTIONS

5.1 The Failure-Repair Process

The simplest model is that corresponding to the
failure-repair process. This is the interrupt process
which generates the smallest reduction in the capac-
ity of the overall system. The only effect is the main
effect for the mean repair time. The results indicate
that the only change that has a detectable effect in
this experiment is to reduce the mean time to repair.
The improvement in cycle time will be by an esti-
mated 34 hours.

It is interesting to note that doubling the time
between failures results in the same improvement in
capacity as halving the time to repair but does not
produce a statistically significant change in the mean
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Figure 3. Probability Plot: All 15 Effects
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cycle time. This importance of the interrupt time
over the time between interrupts is consistent over
all the interrupt processes. In this case it suggests
that equipment should be specified in terms of time
to repair as well as time to failure and that special
attention should be paid to repair procedures.

5.2 The Preventative Maintenance Process

The next more complex model corresponds to the
preventative maintenance process, the process having
the next smallest reduction in the overall capacity of
the system. The only two significant effects are B
and D, the main effects corresponding to the mean
time between preventative maintenance and the
mean interrupt time for preventative maintenance.
There is no significant interaction between the two
effects. Hence, by doubling the time between inter-
rupts we can improve the mean cycle time by 27
hours, by halving the mean interrupt time we im-
prove it by 79 hours and by doing both we can im-
prove it by 106 hours. Again, even though doubling
the mean time between interrupts creates the same
increase in system capacity as the halving of the
mean interrupt time, its effect on the mean cycle time
is much less. Long interrupts have a very deleterious
effect on mean cycle time even when the overall de-
gradation to capacity is small.

5.3 The Setup Process

The setup process has the most complex model
with all four main effects, three two way interactions
and one three way interaction. The effects, A, B,
C, D, AB, AD, BD and ABD are all significant. The
model is

R =1 — 25x; — 50x, — 9.5x3 — 72.5x4

+ 11xyx9 + 25x1x4 + 30.5x,x4 — 13x12x3%4  (2)

Now because of the existence of the interaction
terms the result of making a set of specific changes
cannot be inferred from the main effects alone.
Furthermore, the results of making changes 1s very
dependent on the order in which the changes are
made. For example, if we consider the response
matrix for the two mean factors B and D (repres-
ented by the variables x; and x4) with the distribution
factors A and C (represented by the variables x, and
x3) fixed at the base case (i.e. x, = x3 = — 1). Work-
ing through equation (2) we obtain the following

Hood and Welch

matrix for the effect (relative to the grand mean) of
the two factors at the two levels.

+ =455 —80.5
D
- 236.5 27.5
- +
B

Hence consider the mean setup time, factor D. The
main effect indicates that changing it will result in an
improvement of 145 whereas because of the inter-
actions if we change it from the base case the im-
provement will be 282, almost twice as much. To
illustrate the importance of the sequence in which
changes are made consider the mean time between
setups, factor B. The main effect 1s 100. If we
change it from the base case we get an improvement
of 209. But if we change it after we have changed the
mean setup time then we only get an improvement
of 35. Thus, when there are interaction terms they
must be taken into account when considering the
effect of specific changes. Looking only at the main
effects can be very deceiving.

6 SUMMARY

This has been a brief discussion on the application
of experimental design to simulation with an exam-
ple from semiconductor manufacturing. The em-
phasis has been on the value of a “pure” estimate of
error, the process of model selection and diagnostics,
and the importance and interpretation of interaction
terms.
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