Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

STATE OF THE ART IN PARALLEL SIMULATION

Richard Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, Ga 30332-0280

ABSTRACT

This tutorial surveys topics that presently define the
state of the art in parallel simulation. Included in the
tutorial are discussions on hardware support for par-
allel simulation, load balancing algorithms, dynamic
memory managment for optimistic synchronization,
new protocols, mathematical performance analysis,
and time parallelism.

1 HARDWARE SUPPORT

Hardware support for parallel discrete event simula-
tion have been discussed in the literature for some
time. Machines have been developed for simula-
tion of logic circuits (e.g., see (Franklin et al., 1984,
Corporation, 1983, Pfister, 1982)), however these usu-
ally do not allow concurrent execution of events con-
taining different timestamps.

Closer to the spirit of the parallel simulation prob-
lems discussed here is the work of Georgiadis et al.
who describe a multiprocessor implementation for
Simula programs (Georgiadis el al., 1981). A spe-
cial purpose parallel simulation engine is envisioned
that utilizes a controller processor to manage the exe-
cution of the parallel simulator, and determine which
processes may be executed in parallel. More recently,
Concepcion describes a hierarchical, bus-based multi-
processor system for discrete event simulation appli-
cations (Concepcion, 1989). The simulator is speci-
fied hierarchically, and is then mapped directly onto
a hierarchical machine architecture.

Some work has also studied hardware support for
optimistic protocols. In Time Warp, processes must
periodically checkpoint their state in case a rollback
later occurs. State saving overheads can incur a sig-
nificant overhead (Fujimoto, 1989a). One can alle-
viate this overhead to some extent by reducing the
frequency of checkpointing, however, analytic and ex-
perimental data suggest that the optimal checkpoint

David Nicol

Dept. of Computer Science
College of William & Mary
Williamsburg, VA 23187

interval may be frequent (e.g., every few events),
which limits the utility of infrequent state saving.

Fujimoto, et al. propose a component called the
rollback chip that provides hardware support for state
saving and rollback in Time Warp (Fujimoto et al.,
1992). The rollback chip can be viewed as a spe-
cial memory management unit. A process may issue
a “mark” operation to indicate that the state of a
data segment must be preserved in case a rollback
later occurs. The rollback chip hardware then mod-
ifies the addresses of subsequent memory writes to
preserve this data. Simulations indicate that state
saving overhead can be reduced to only a few percent
of the computation. A prototype implementation of
the rollback chip has been developed in the commer-
cial sector (Buzzell et al., 1990). The rollback chip
work has also been extended to support a timestamp
addressed memory system called space-time memory
which is the principal component of a machine ar-
chitecture called the Virtual Time Machine that uses
rollback as the principal primitive for synchronization
(Fujimoto, 1989b, Ghosh and Fujimoto, 1991).

Reynolds has proposed a hardware mechanism to
rapidly collect, operate on, and disseminate synchro-
nization information throughout a parallel simulation
system (Reynolds, Jr., 1991, Pancerella, 1992). The
hardware is configured as a binary tree, with a proces-
sor assigned to each node. For example, simulations
indicate that the time required to compute GVT is
reduced by orders of magnitude over software based
approaches. A prototype system is currently under
construction.

2 LOAD BALANCING

The simulation contains some initial set of logical pro-
cesses. New processes may be created, or existing
processes deleted as the simulation progresses. Ide-
ally, these processes should be distributed across the
parallel processor so that (1) all processors remain

Parallel Simulation 247

busy doing useful work all of the time, and (2) inter-
processor communications is minimized.

Static load balancing algorithms distribute a fixed
set of processes over the processors in the system.
Dynamic algorithms allow processes to migrate dur-
ing the execution of the parallel simulation. Dynamic
algorithms are more appropriate if (1) information to
achieve proper load balancing is not available until
runtime, or (2) the proper distribution of processes
to processors changes dynamically throughout the
program’s execution, e.g., for simulations that move
through phases where a load distribution appropriate
for one phase is inappropriate for another.

Load balancing has been widely studied for gen-
eral (i.e., not necessarily simulation) parallel and
distributed computation. Many of the techniques
that have been proposed (e.g., simulated anneal-
ing, numerical techniques, node exchange heuris-
tics, pressure based load migration) can be ap-
plied to parallel simulation programs. For instance,
Nandy and Loucks use an iterative, static load
balancing algorithm for parallel simulation using
the Chandy/Misra/Bryant synchronization protocol
(null messages) (Nandy and Loucks, 1992). The al-
gorithm begins with an initial, random, partitioning
of the task graph, and then continually evaluates pos-
sible movement of nodes (logical processes) from one
partition to another. This algorithm assumes much is
known about the simulation in terms of computation
and communication requirements of logical processes.

Early work on static and dynamic load balancing
is found in (Nicol and Reynolds, 1985, Nicol, 1985).
The basic idea behind the static mapping algorithm
is to examine the critical paths through multiple exe-
cutions of a simulation, and cluster in such a way that
the critical paths are left as undisturbed as possible.
The dynamic load balancing algorithm is actually dy-
namic invocation of the static algorithm, based on a
statistical decision process that monitors the simula-
tion’s behavior and triggers a remapping when it is
probable that the resulting performance gains exceed
the total remapping cost.

Prior to developing their own dynamic load bal-
ancing mechanisms, the JPL TWOS group performed
static load balancing for their Time Warp programs
by first collecting a trace of the program’s execution.
Based on this trace, a task graph showing all depen-
dencies between events is constructed, and a bin pack-
ing algorithm used to determine a suitable assignment
of processes to processors. The “off-line” nature in-
herent in this approach led them to develop and rely
upon dynamic load management algorithms instead.

Optimistic synchronization mechanisms introduce
a new wrinkle to dynamic load balancing: high pro-

cessor utilization does not necessarily imply good
performance, because a processor may be busy ex-
ecuting workload that is later undone. To address
this issue, Reiher and Jefferson propose a new metric
called effective processor utilization which is defined
as the fraction of the time during which a processor
i1s executing computations that are eventually com-
mitted (Reiher and Jefferson, 1990). They propose a
strategy that migrates processes from processors with
high effective utilization to those with low utilization.
An algorithm that is similar in spirit is proposed in
(Glazer, 1992). This algorithm allocates virtual time-
slices to processes, based on their observed rate of
advancing the local simulation clock. Uniprocessor
simulation studies reveal scenarios in which this time-
slicing approach achieves significantly better perfor-
mance than the Reiher and Jefferson algorithm (as
much as 33%), and others where the performance of
the two methods is comparable.

A second problem in Time Warp is the fact that
process migration may be very expensive because pro-
cesses contain a large amount of history information.
Reiher and Jefferson propose splitting a process into
phases when the process migrates to another proces-
sor. Each phase spans a contiguous segment of sim-
ulated time that does not overlap with other phases.
When migration occurs, the old phase (and its corre-
sponding history information) remain on the original
processor, and the new phase begins at the new pro-
cessor. Rollbacks may span phase boundaries. Reiher
and Jefferson demonstrate that phase splitting and
the effective utilization metric are useful to dynam-
ically balance the load in simulations of a commu-
nication network, a system of colliding pucks, and a
combat models.

3 MEMORY MANAGEMENT

While the analyses discussed above are primarily con-
cerned with time performance, a related question is
that of memory performance. A growing body of re-
search examines storage utilization of parallel simu-
lations.

Optimistic mechanisms maintain information con-
cerning the history of the program’s execution in or-
der to enable recover from synchronization errors. In
Time Warp, for instance, each process maintains past
state vectors in its state queue, processed events in its
input queue, and records of previously sent messages
(anti-messages) in its output queue. A mechanism
called fossil collection 1s provided to reclaim “old”
history information that is no longer needed (Jeffer-
son, 1985). Fossil collection relies on the computa-
tion of a quantity called global virtual time (GVT),

248 Fujimoto and Nicol

which represents a lower bound on the timestamp
of any future rollback. GVT may usually be com-
puted as the minimum timestamp of any unprocessed
or partially processed message in the system, though
for certain protocols, e.g., message sendback, GVT
must be computed using the timestamp of the send-
ing process when the message was generated. Stor-
age used by message buffers and snapshots of process
state that are older than (GVT) can be reclaimed and
used for other purposes. Even with fossil collection,
however, the amount of storage that is required to
execute Time Warp programs may be large.

How can a Time Warp program reduce its mem-
ory requirements? One approach that economizes on
memory for state vectors is to reduce the frequency of
state saving. The drawback of this approach is that
rollbacks become more costly. To roll back to simu-
lated time T', a process must (1) roll back to the most
recent state vector older than T, and (2) recompute
forward again to reach simulated time T. Message
sending must be “turned off” during the recomputa-
tion phase or a domino effect could occur that rolls
back the simulation beyond GVT. Infrequent state
saving increases the cost of each rollback because on
average, the length of each rollback is greater, and
the number of events in each recomputation phase is
increased. This is problematic because as illustrated
in (Fujimoto, 1990), the computation is more prone
to unstable execution if rollback costs are high.

Although infrequent state saving increases rollback
overhead, it also decreases the time required to per-
form state saving, which can be substantial. This
tradeoff suggests that there may be an optimal state
saving frequency that balances state saving overhead
and recomputation costs. This question has been
studied in the context of fault tolerant computation,
e.g., see (Chandy, 1975, Gelenbe, 1979). More re-
cently, Lin and Lazowska considered this tradeoff in
the context of Time Warp programs, and show that
an error in overestimating the state saving frequency
is more costly than an equal magnitude error in un-
derestimating the frequency, i.e., it is better to err on
the side of less-frequent-than-optimal state saving in
order to maximize performance (Lin and Lazowska,
1990b). Preiss, MacIntyre, and Loucks (Preiss et al.,
1992) and Bellenot (Bellenot, 1992) validate this ob-
servation experimentally. Bellenot also observes that
benefits in reducing state saving frequency diminish
or become liabilities as the number of processors is
increased.

Even with infrequent state saving, however, the
question remains: what happens if the Time Warp
program runs out of memory, and no additional stor-
age can be reclaimed via fossil collection? Several

approaches have been developed to address this con-
cern. The basic idea behind these mechanisms is to
roll back overly optimistic computations, and reclaim
the memory they use for other purposes. Jefferson
first proposed a mechanism called message sendback
to achieve this effect (Jefferson, 1985). In message
sendback, the Time Warp executive may return a
message to its original sender without ever process-
ing it, and reclaim the memory used by the message.
Upon receiving the returned message, the sender will
(usually) roll back to the send-timestamp of the mes-
sage (i.e., the virtual time of the sender of the mes-
sage when it was generated), and regenerate it. This
rollback causes anti-messages to be sent (assuming
aggressive cancellation), and the subsequent annihi-
lations release additional memory resources in the
system. Only messages with send timestamp greater
than GVT can be returned, since otherwise, a roll-
back beyond GVT might result.

Jefferson’s original proposal invokes message send-
back when a process receives a message, but finds that
there is no memory available to store it (Jefferson,
1985). The message with the largest send-timestamp
is returned. Gafni proposes a protocol that utilizes
message sendback as well as other mechanisms to
reclaim storage used by state vectors and messages
stored in the output queue when a process finds that
its local memory is exhausted (Gafni, 1988).

Jefterson has proposed an alternative approach
called cancelback (Jefferson, 1990). While Gafni’s al-
gorithm will only discard state in the process that
ran out of memory, cancelback allows state in any
process to be reclaimed. Messages containing high
send-timestamps are sent back to reclaim storage al-
located to messages. This tends to roll back processes
that are ahead of others in the simulation.

Another approach, proposed by Lin, is the artifi-
cial rollback algorithm (Lin, 1992). When storage is
exhausted and fossil collection fails to reclaim addi-
tional memory, processes are rolled back to recover
memory. The process that is the furthest ahead is
rolled back to the time of the second most advanced
process. This procedure is repeated until the supply
of free memory reaches a certain threshold. The prin-
cipal advantage of artificial rollback over cancelback
1s that it is simpler to implement.

Artificial rollback and cancelback have the interest-
ing property that they are able to execute the simu-
lation program using no more memory than that re-
quired by the sequential execution utilizing an event
list. Lin refers to protocols such as these that require
no more than a constant times the amount of memory
required for sequential execution as storage optimal.
This is an attractive property because it allows the

Parallel Simulation 249

Time Warp program to execute with whatever mem-
ory is available, provided there is enough to execute
the sequential version.

It is interesting to note that while Time Warp with
cancelback or artificial rollback are storage optimal,
certain conservative simulation protocols are not. Lin
et al. (Lin et al, 1990) and Jefferson (Jefferson,
1990) show that the Chandy/Misra/Bryant algorithm
may require O(nk) space for parallel simulations ex-
ecuting on n processors where the sequential simula-
tion requires only O(n + k) space. Further, Lin and
Preiss (?) report the existence of simulations where
Chandy/Misra/Bryant have exponential space com-
plexity, and thus utilize much more storage than the
sequential simulation. On the other hand, they also
indicate that this algorithm may sometimes use less
storage than that which is required by the sequential
simulator. Time Warp with cancelback or artificial
rollback always requires at least this much.

Of course, a Time Warp program will run very
slowly if one only provides the absolute minimum
amount of memory. Recently, the question of Time
Warp performance as the amount of memory is var-
ied has been studied (Akyildiz et al., 1992). An ana-
lytic model validated by experimental measurements
was developed. This work indicates that for homoge-
neous workloads, Time Warp requires relatively little
memory to achieve good performance, provided fossil
collection overheads do not dominate. In particular,
this work indicates that four to five buffers per pro-
cessor (where a buffer holds a state vector and an
event) beyond the amount required for sequential ex-
ecution achieves performance that is comparable to
Time Warp with unlimited memory.

4 NEW PROTOCOLS

Protocol-related research remains one of the major
focii of research attention. Most new work in this
area can be categorized as follows.

4.1 Enhancements to CMB algorithms

Since its first proposal in the late 1970’s, re-
searchers have proposed various optimizations to the
“pull-message” based synchronization developed by
Chandy and Misra (Chandy and Misra, 1979), and
independently by Bryant (Bryant, 1977). An opti-
mization explored in (Cai and Turner, 1990) is to have
null messages carry a list of nodes visited by the mes-
sage; this permits analysis that reduces the number of
null messages needed to allow forward progress. The
optimization explored in (Lin et al., 1990) involves re-
structuring simulations with no apparent lookahead,

so as to remove feedback loops. Reduction of null
message propagation is the object of “null message
cancellation”, proposed in (Preiss et al., 1991).

4.2 Enhancements to Time Warp

Another body of work examines optimizations to the
basic Time Warp mechanism, originally proposed in
(Jefferson, 1985). Some mechanisms, such as (Madis-
etti et al, 1988) and (Madisetti et al., 1992) in-
volve optimizations to rollback mechanism; the ba-
sic idea is to perform large-scale “preventive” roll-
backs quickly, rather than let rollbacks propagate in
a chain-reaction. Another line of research is to con-
strain Time Warp’s optimism, e.g., (Turner and Xu,
1992, Ball and Hoyt, 1990, Lubachevsky et al., 1989).
The methods vary, but the basic idea is restrain Time
Warp from executing events “too far” in the future.

4.3 Protocols Based on Windows

One emerging theme in protocol research is to study
protocols that constrain all concurrent simulation ac-
tivity to be within some window of global synchro-
nization time. These protocols typically compute,
distribute and are controlled by global system in-
formation. In this they reflect a philosophical shift
away from the roots of parallel simulation in asyn-
chronous distributed system theory. One promising
aspect of these algorithms is their relative compati-
bility with SIMD architectures. The algorithms stud-
ied in (Chandy and Sherman, 1989a, Nicol, 1992,
Ayani, 1989, Steinman, 1991, Gaujal et al., 1992) all
compute a global minimum that defines a time be-
yond which no processor will venture until the next
window “phase”, but permit processors to execute
concurrently up to that point. Performance of such
protocols on SIMD architectures is reported in (Berk-
man and Ayani, 1991) and in (Gaujal et al., 1992).

4.4 Application Specific Protocols

It i1s frequently the case that the importance of
an application justifies tailoring a protocol to its
special requirements and characteristics. This ap-
proach often delivers performance advantages over
“general” protocols, which may suffer extra over-
heads to support circumstances never encountered
in the application. Protocol design for digital logic
networks are considered in (Su and Seitz, 1989,
DeBenedictis et al., 1991); protocols for simulat-
ing general continuous-time Markov chains are de-
veloped in (Heidelberger and Nicol, 1991, Nicol and
Heidelberger, 1992); and protocols for timed Petri
nets are considered in (Kumar and Harous, 1990,

250 Fujimoto and Nicol

Thomas and Zahorjan, 1991) (timed Petri nets are
also studied in (Nicol and Roy, 1991), but a general
purpose synchronization protocol is used).

4.5 Other Protocols

Other recent protocol research includes on-going in-
vestigation of deadlock-breaking protocols (Bouk-
erche and Tropper, 1991, Cote and Tropper, 1992),
and of parallelizing priority heap operations (Prasad
and Deo, 1991).

5 ANALYTIC PERFORMANCE ANALY-
SIS

The last three years have witnessed an explosion of
papers on the analytic performance modeling of par-
allel simulations. A common trait among these are
assumptions made for the purposes of mathematical
tractability. For example, it is commonly assumed
that the time-advance associated with executing an
event is an exponential random variable; it is com-
monly assumed that when sent, a message is routed
to some processor selected uniformly at random from
among all processors. Markov chains of one kind
or another frequently underlie these analyses. De-
spite obvious limitations, this ground-breaking work
in analysis is exciting because it helps to shed new
understanding on the potentials—and limits—of par-
allel simulation.

A significant body of work is devoted to compar-
ing different synchronization algorithms. In (Fel-
derman and Kleinrock, 1990) it is shown that the
average performance difference between synchronous
time-stepping and an optimistic asynchronous algo-
rithm such as Time Warp i1s no more than a factor of
O(log P), P being the number of processors. This is
actually an extreme case—if the time advance distri-
bution is bounded from above, the performance dif-
ference is no more than a factor of 2. Conditions for
the optimality of Time Warp (in the absence of over-
head costs) are demonstrated in (Lin and Lazowska,
1990a). An interesting asymmetry is demonstrated
in (Lipton and Mizell, 1990), with examples show-
ing that Time Warp is capable of arbitranly bet-
ter performance than the Chandy-Misra-Bryant null-
message approach and a proof that the converse is
not true.

The difference between a conservative windowing
algorithm and Time Warp is studied in (D.M.Nicol,
1991). This analysis includes overheads for both
methods, and captures the dependence of perfor-
mance on lookahead. Not surprising, the results of
the comparison depend on the magnitudes of the

overhead costs. Exact two-processor analyses in (Fel-
derman and Kleinrock, 1991b) and (Felderman and
Kleinrock, 1992) permit a comparison of optimistic
and conservative methods in this limited case; how-
ever, this style of analysis is extended to general
numbers of processors in (Felderman and Kleinrock,
1991a).

Specific protocols are sometimes analyzed. (Nicol,
1992) analyzes a conservative windowing algorithm,
and demonstrates the asymptotic convergence of per-
formance to optimality. A unique analysis (based on
differential equations) of a similar algorithm is found
in (Steinman, 1991). (Dickens and Reynolds, Jr.,
1991) also analyze a windowing algorithm. (Eick et
al., 1991) propose and analyzes an asynchronous re-
laxation algorithm for circuit-switched networks (al-
though the analysis carries over to other problem do-
mains).

A detailed analysis of Time Warp is found in
(Gupta et al., 1991); an extension to consider the
effects of limited memory is considered in (Aky-
ildiz et al., 1992). Scheduling issues in Time Warp
are considered in (Lin and Lazowska, 1991a); roll-
back is studied in (Lin and Lazowska, 1991b) and
(Lubachevsky et al., 1991).

6 TIME PARALLELISM

The most obvious parallelism in physical systems is
due to concurrent activity among spatially separated
objects, so-called space parallelism. It has recently
been recognized that parallelism can sometimes also
be found in fime—the behavior of a single object
at different points in time can be concurrently sim-
ulated. Early recognition of this fact is found in
(Chandy and Sherman, 1989b), where the authors ob-
serve that simulations are fixed-point computations,
and as such can be executed as asynchronous-update
computations. Practical exploitation of time paral-
lelism was established in (Greenberg et al., 1991),
where it was shown how certain queueing systems
can be expressed as systems of recurrence relations
(in the time domain), which can be solved using
standard parallel prefix methods on massively par-
allel machines. This line of thought was contin-
ued for certain types of timed Petri nets (Baccelli
and Canales, 1992). New massively parallel algo-
rithms for less tractable recurrence equations are de-
veloped for trace-driven cache simulations (Nicol et
al., 1992), and for circuit-switched communication
networks (Eick et al., 1991, Gaujal et al., 1992).

A more direct approach to time parallelism is to
partition the time domain, assigning different pro-
cessors to different regions of time. A processor p

Parallel Simulation 251

assumes some initial state for the system at the be-
ginning point of its interval, say time ¢, and then
simulates its interval. Now the processor whose in-
terval terminates at t may have a different final state
at t than the one assumed by p. In this case a fiz-
up operation must be performed. This method will
work if the cost of a fix-up is much less than the
cost of resimulating the interval. Variations on this
idea are found in (Heidelberger and Stone, 1990) (for
LRU cache simulation), (Ammar and Deng, 1991),
and (Lin and Lazowska, 1991c¢).

ACKNOWLEDGEMENTS

The contribution of David Nicol was supported in
part by NASA grants NAG-1-1060 and NAG-1-995,
NSF grants ASC 8819373 and CCR-9201195. The
contribution of Richard Fujimoto was supported in
part by Innovative Science and Technology contract
number DASG60-90-C-0147 provided by the Strate-
gic Defense Initiative Office and managed through
the Strategic Defense Command Advanced Technol-
ogy Directorate Processing Division, and NSF grant

CCR-8902362.

REFERENCES

Akyildiz et al., 1992. Performance analysis of Time
Warp with limited memory. Proceedings of the
1992 ACM SIGMETRICS Conference on
Measuring and Modeling Computer Systems,
20(1), May 1992.

Ammar and Deng, 1991. Time warp simulation
using time scale decomposition. pages 11-24. SCS
Simulation Series, Jan. 1991.

Ayani, 1989. A parallel simulation scheme based on
the distance between objects. Proceedings of the
SCS Multiconference on Distributed Simulation,
21(2):113-118, March 1989.

Baccelli and Canales, 1992. Parallel simulation of
stochastic petri nets using recurrence equations.
In Proceedings of the 1992 SIGMETRICS
Conference, pages 257-258, Newport, Rhode
Island, June 1992.

Ball and Hoyt, 1990. The adaptive Time-Warp
concurrency control algorithm. Proceedings of the
SCS Multiconference on Distributed Simulation,
22(1):174-177, January 1990.

Bellenot, 1992. State skipping performance with the
time warp operating system. In 6!* Workshop on
Parallel and Distributed Simulation,

Berkman and Ayani, 1991. Parallel simulation of
multistage interconnection networks on a simd
computer. pages 133-140. SCS Simulation Series,
Jan. 1991.

Boukerche and Tropper, 1991. A performance
analysis of distributed simulation with clustered
processes. pages 112-124. SCS Simulation Series,
Jan. 1991.

Bryant, 1977. Simulation of packet communication
architecture computer systems.
MIT-LCS-TR-188, Massachusetts Institute of
Technology, 1977.

Buzzell et al., 1990. Modular VME rollback
hardware for Time Warp. Proceedings of the SCS
Multiconference on Distributed Simulation,
22(1):153-156, January 1990.

Cai and Turner, 1990. An algorithm for distributed
discrete-event simulation — the “carrier null
message” approach. Proceedings of the SCS
Multiconference on Distributed Simulation,

22(1):3-8, January 1990.

Chandy and Misra, 1979. Distributed simulation: A
case study in design and verification of
distributed programs. IEEE Trans. on Software
Engineering, 5(5):440-452, September 1979.

Chandy and Sherman, 1989a. The conditional event
approach to distributed simulation. Proceedings of
the SCS Multiconference on Distributed
Simulation, 21(2):93-99, March 1989.

Chandy and Sherman, 1989b. Space, time, and
simulation. Proceedings of the SCS
Multiconference on Distributed Simulation,

21(2):53-57, March 1989.

Chandy, 1975. A survey of analytic models of
rollback and recovery strategies. IEEE Compuler,
8(5):40-47, May 1975.

Concepcion, 1989. A hierarchical computer
architecture for distributed simulation. IEEE
Transactions on Computers, C-38(2):311-319,
February 1989.

Corporation, 1983. Zycad Corporation. The Zycad
Logic Evaluator: Product Description. Zycad
Corp., Roseville Mn., 1983.

Cote and Tropper, 1992. On distributed and
pseudosimulation. In 6'* Workshop on Parallel
and Distributed Simulation,

252 Fujimoto and Nicol

DeBenedictis et al., 1991. A novel algorithm for
discrete-event simulation. Computer, 24(6):21-33,
June 1991.

Dickens and Reynolds, Jr., 1991. A performance
model for parallel simulation. In Proceedings of
the 1991 Winter Simulation Conference, pages
618-626, Phoenix, AZ, December 1991.

D.M.Nicol, 1991. D.M.Nicol. Performance bounds
on parallel self-initiating discrete-event
simulations. ACM Trans. on Modeling and
Computer Simulation, 1(1):24-50, January 1991.

Eick et al., 1991. Synchronous relaxation for
parallel simulations with applications to
circuit-switched networks. pages 151-162. SCS
Simulation Series, Jan. 1991.

Felderman and Kleinrock, 1990. An upper bound
on the improvement of asynchronous versus
sychronous distributed processing. Simulation
Series, Jan. 1990.

Felderman and Kleinrock, 1991a. Bounds and
approximations for self-initiating distributed
simulation without lookhead. ACM Trans. on
Modeling and Computer Simulation, 1(4),
October 1991.

Felderman and Kleinrock, 1991b. Two processor
time warp analysis: Some results on a unifying
approach. pages 3-10. SCS Simulation Series, Jan.
1991.

Felderman and Kleinrock, 1992. Two processor
conservative simulation analysis. In 6!» Workshop
on Parallel and Distributed Simulation,

Franklin et al., 1984. Parallel machines and
algorithms for discrete-event simulation.
Proceedings of the 1984 International Conference
on Parallel Processing, pages 449-458, August
1984.

Fujimoto et al., 1992. Design and evaluation of the
rollback chip: Special purpose hardware for Time
Warp. IEEFE Transactions on Compulers,
41(1):68-82, January 1992.

Fujimoto, 1989a. Time Warp on a shared memory
multiprocessor. Transactions of the Society for
Computer Simulation, 6(3):211-239, July 1989.

Fujimoto, 1989b. The virtual time machine.
International Symposium on Parallel Algorithms
and Architectures, pages 199-208, June 1989.

Fujimoto, 1990. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53,
October 1990.

Gafni, 1988. Rollback mechanisms for optimistic
distributed simulation systems. Proceedings of the
SCS Multiconference on Distributed Simulation,
19(3):61-67, July 1988.

Gaujal et al., 1992. A sweep algorithm for
massively parallel simulation of circuit-switched
networks. Technical Report ICASE Technical
Report 92-30, ICASE, July 1992.

Gelenbe, 1979. On the optimum checkpoint interval.
Journal of the ACM, 26(4):259-270, April 1979.

Georgiadis et al., 1981. Towards a parallel simula
machine. Proceedings of the 8th Annual
Symposium on Computer Architecture,
9(3):263-278, May 1981.

Ghosh and Fujimoto, 1991. Parallel discrete event
simulation using space-time memory. Proceedings
of the 1991 International Conference on Parallel
Processing, Vol. 3, 3:201-208, August 1991.

Glazer, 1992. D.W. Glazer. Load Balancing Parallel
Discrete- Event Simulations. PhD thesis, McGill
University, May 1992.

Greenberg et al., 1991. Algorithms for unboundedly
parallel simulations. ACM Trans. on Comp.
Systems, 9(3):201-221, 1991.

Gupta et al., 1991. Performance analysis of Time
Warp with multiple homogenous processors.
IEEFE Transactions on Software Engineering,
17(10):1013-1027, October 1991.

Heidelberger and Nicol, 1991. Conservative parallel
simuation of continuous time markov chains using
uniformization. Technical Report IBM Research
Report RC-16780, IBM Research Division, April
1991.

Heidelberger and Stone, 1990. Parallel trace-driven
cache simulation by time partitioning. Technical
Report RC 15500, IBM Research, February 1990.

Jefferson, 1985. Virtual time. ACM Transactions
on Programming Languages and Systems,

7(3):404-425, July 1985.

Jefferson, 1990. Virtual time II: Storage
management in distributed simulation.
Proceedings of the Ninth Annual ACM
Symposium on Principles of Distributed
Computing, pages 75-89, August 1990.

Parallel Simulation 253

Kumar and Harous, 1990. An approach towards
distributed simulation of timed petri nets. In
Proceedings of the 1990 Winter Simulation
Conference, pages 428-435, New Orleans, LA.,
December 1990.

Lin and Lazowska, 1990a. Optimality
considerations of “time warp” parallel simulation.
Simulation Series, Jan. 1990.

Lin and Lazowska, 1990b. Reducing the state
saving overhead for Time Warp parallel
simulation. Technical Report 90-02-03, Dept. of
Computer Science, University of Washington,
Seattle, Washington, February 1990.

Lin and Lazowska, 1991a. Processor scheduling for
time warp parallel simulation. pages 11-14. SCS
Simulation Series, Jan. 1991.

Lin and Lazowska, 1991b. Y.-B. Lin and E.D.
Lazowska. A study of Time Warp rollback
mechanisms. ACM Trans. on Modeling and
Computer Simulation, 1(1):51-72, January 1991.

Lin and Lazowska, 1991c. Y.-B. Lin and E.D.
Lazowska. A time-division algorithm for parallel
simualtion. ACM Trans. on Modeling and
Computer Simulation, 1(1):73-83, January 1991.

Lin et al., 1990. Conservative parallel simulation for
systems with no lookahead prediction. Proceedings
of the SCS Multiconference on Distribuled
Simulation, 22(1):144-149, January 1990.

Lin, 1992. Y.-B. Lin. Memory management
algorithms for optimistic parallel simulation. In
6" Workshop on Parallel and Distributed
Simulation,

Lipton and Mizell, 1990. Time Warp vs.
Chandy-Misra: A worst-case comparison.
Simulation Series, Jan. 1990.

Lubachevsky et al., 1989. Rollback sometimes
works ... if filtered. 1989 Winter Simulation
Conference Proceedings, pages 630-639, December
1989.

Lubachevsky et al., 1991. An analysis of
rollback-based simulation. ACM Trans. on
Modeling and Computer Simulation, 1(2):154-192,
April 1991.

Madisetti et al., 1988. Wolf: A rollback algorithm
for optimistic distributed simulation systems.
1988 Winter Simulation Conference Proceedings,
pages 296-305, December 1988.

Madisetti et al., 1992. The mimdix operating
system for parallel simulation. In 6** Workshop
on Parallel and Distributed Simulation,

Reynolds, Jr., 1991. An efficient framework for
parallel simulations. pages 167-174. SCS
Simulation Series, Jan. 1991.

Nandy and Loucks, 1992. An algorithm for
partitioning and mapping conservative parallel
simulation onto multicomputers. In 6'* Workshop
on Parallel and Distributed Simulation,

Nicol and Heidelberger, 1992. Optimistic parallel
simuation of continuous time markov chains using
uniformization. Technical Report IBM Research
Report RC-17932, IBM Research Division, April
1992.

Nicol and Reynolds, 1985. D.M. Nicol and P.F.
Reynolds, Jr. A statistical approach to dynamic
partitioning. Simulation Series, 1985.

Nicol and Roy, 1991. Parallel simulation of timed
petri nets. In Proceedings of the 1991 Winter
Simulation Conference, pages 574-583, Phoenix,
Arizona, December 1991.

Nicol et al., 1992. Massively parallel algorithms for
trace-driven cache simulation. In 6** Workshop
on Parallel and Distributed Simulation,

Nicol, 1985. D.M. Nicol. The Automated
Partitioning of Stmulations for Parallel Ezecution.
PhD thesis, University of Virginia, August 1985.

Nicol, 1992. D.M. Nicol. The cost of conservative
synchronization in parallel discrete-event
simulations. Journal of the ACM, 1992. To
appear. Available as technical report 90-20 from
ICASE, Mail Stop 132C, NASA Langley Research
Center, Hampton, VA 23665.

Pancerella, 1992. Improving the efficiency of a
framework for parallel simulations. In 6t?
Workshop on Parallel and Distributed Simulation,

Pfister, 1982. The yorktown simulation engine:
Introduction. In Proc. 19th Design Automation
Conference, pages 51-54, June 1982.

Prasad and Deo, 1991. An efficient and scalable
parallel algorithm for discrete-event simulation.
In Proceedings of the 1991 Winter Simulation
Conference, pages 652-660, Phoenix, AZ,
December 1991.

254 Fujimoto and Nicol

Preiss et al., 1991. Null message cancellation in
conservative distributed simulation. pages 33-38.
SCS Simulation Series, Jan. 1991.

Preiss et al., 1992. On the trade-off between time
and space in optimistic parallel discrete-event
simulation. In 6'* Workshop on Parallel and
Distributed Simulation,

Reiher and Jefferson, 1990. Dynamic load
management in the Time Warp Operating
System. Transactions of the Society for Compuler
Simulation, 7(2):91-120, June 1990.

Steinman, 1991. Speedes:synchronous parallel
environment for emulation and discrete event
simulation. pages 95-103. SCS Simulation Series,
Jan. 1991.

Su and Seitz, 1989. Variants of the
Chandy-Misra-Bryant distributed discrete-event
simulation algorithm. Proceedings of the SCS
Multiconference on Distributed Simulation,
21(2):38-43, March 1989.

Thomas and Zahorjan, 1991. Parallel simulation of
performance petri nets: Extending the domain of
parallel simulation. In Proceedings of the 1991
Wainter Simulation Conference, pages 564-573,
Phoenix, Arizona, December 1991.

Turner and Xu, 1992. Performance evaluation of
the bounded time warp algorithm. In 6*”
Workshop on Parallel and Distributed Simulation,

AUTHOR BIOGRAPHIES

RICHARD FUJIMOTO is an associate professor
in the College of Computing at the Georgia Institute
of Technology. He received B.S. degrees in Computer
Science and Computer Engineering from the Univer-
sity of Illinois, Urbana, in 1977 and 1978, and M.S.
and Ph.D. degrees from the University of California,
Berkeley, in 1980 and 1983, respectively. He has been
actively involved in research in parallel discrete event
simulation over the past six years. He has served as
general, program, and associate-program chair for the
annual Workshop on Parallel and Distributed Simu-
lation (PADS), and currently chairs the steering com-
mittee for that meeting. He is also an area editor for
ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS).

DAVID M. NICOL received a B.A. in Mathematics
from Carleton College, Northfield MN, in 1979. After

3 years in industry he attended the University of Vir-
ginia, where he received M.S. and Ph.D. degrees in
Computer Science, in 1983 and 1985. He is presently
an Associate Professor in the Department of Com-
puter Science, at the College of William and Mary,
Williamsburg, Virginia. He is an associate editor for
the ACM’s Transactions on Modeling and Computer
Simulation and for the ORSA Journal on Computing,
and has served as the 1990 Program Chairman and
the 1991 General Chairman of the Workshop on Par-
allel and Distributed Simulation (PADS). His inter-
ests are in parallel simulation, performance analysis,
and algorithms for mapping parallel workload.

