Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. . Wilson

GRAPHICAL MODEL STRUCTURES FOR
DISCRETE EVENT SIMULATION

Lee W. Schruben

School of Operations Research and Industrial Engineering
Cornell University, Ithaca, New York 14853

and

SEMATECH, Austin, Texas 78741-6499 U.S.A.

ABSTRACT

Several different graphical techniques for specifying
models for discrete event systems are reviewed
including process networks, generalized stochastic Petri
nets, stochastic state diagrams, and event graphs. This
paper presents a brief summary of these modeling
approaches and highlights some of their similanties and
differences.

1. BACKGROUND AND DEFINITIONS
A system 1s defined as a

set of entities that interact for shared purposes
according to sets of common laws and policies for an
interval of time.

A system can be either real or hypothetical. The
interval of time for which the system is defined is
called its lifetime, this is the amount of time we are
interested in studying the system. The entities in a
system are either resident, remaining in the system for
its entire lifetime, or transient, entering and exiting the
system as time passes.
A model is simply

a system that is used for a surrogate of another system.

A simulation is a computer program used as a model
for some other system of interest. In a simulation
model the entities are described by numerical (coded)
attributes. The state of the simulation includes the
values for all of its attributes as well as what is known
about the future. We define an event as any situation
where the state of the system might possibly change. In
a discrete event dynamic system all changes in state
occur at discrete instants of time. A discrete event
system is typically an idealized or abstract system that
is used as a model for a more complex system.

241

In this paper, we concentrate on tools for specifying
the behavior of discrete event systems that are complete
graphical representations. That is, a directed graph can
be drawn with labeled edges (arrows) and vertices
(balls or blocks) forming a network that completely
defines the structure of a specific system. Along with
an 1nitial state, stopping conditions, and a specified
input process, the graph completely describes a specific
model's behavior. Structural and behavioral properties
for simulations have been defined in [Yucesan and
Schruben, 1992]. For each graphical model there is a
set of implicit rules (e.g., time advance algorithms) that
define how the input i1s processed to produce the
model's output. There are many such graphical
procedures; only some of the more popular approaches
will be presented. In particular, we will not include the
many special-purpose approaches for building
simulators.

One of the most distinctive features of these modeling
methodologies is the number of different types of
modeling objects used. Objects are considered to be of
a different type if they are defined by different rules of
behavior; different types of objects are typically
represented in the graphs by different shapes or as
having different names. Different types of graphical
objects are sometimes referred to as modeling "blocks".

Methodologies that have few types of graphical
objects are easier to learn than those with many
different types of objects. Methodologies that have
many types of objects may be harder to learn but may
be easier to use or understand once they are mastered.

Surprisingly, having a large number of different
types of graphical modeling objects does not imply that
the technique 1s more powerful. If anything, just the
opposite tends to be true. This has to do with the
modeling philosophy behind each approach.

One extreme is to try and identify all of the possible
situations that might need to be modeled and define a
special macro block or graphical object for each

o
i
(8%

situation. We will refer to this approach as the macro-
modeling philosophy.

At the other extreme, a single elementary graphical
object might be defined that theoretically can be used to
model quite general situations. We will refer to this
viewpoint as the minimalist philosophy.

The macro-modeling approach requires that a new
graphical object be defined for each new system
behavior that needs to be modeled. As new situations
are encountered, new blocks are defined. Such
techniques can easily swell into a relatively awkward
modeling tool that requires a college semester or more
to learn. An elegant general minimalist technique might
be learned 1n a matter of seconds but require experience
and cleverness when modeling complicated systems.

2. PROCESS NETWORKS

The process network modeling approach 1s one of the
oldest approaches to modeling discrete event systems.
One of the first simulation languages to adopt this
technique is GPSS. An up to date accounting of one of
the dialects of GPSS can be found in [Schriber, 1991].
With GPSS a controlled macro-modeling philosophy
has successfully been followed where new modeling
blocks have been introduced as their need is perceived.
The original GPSS blocks that generate transient
entities to enter a system and describe how they queue
for and seize resident entities have been augmented by
specialized blocks that model such things as the failure
of system components. Currently, there are over 60
types of blocks defined for some versions of GPSS.
The network modeling subsystem in SIMAN [Pegden,
et. al., 1990], follows a similar approach. The current
network modeling part of SLAM [Prtsker, 1986] is
also similar to SIMAN and GPSS with the exception
that the passage of time is modeled using edges of the
graph rather than in time "advance” or "delay" vertices
used by GPSS and SIMAN.

A minimalist approach to process modeling has been
taken by some simulators of specialized types of
systems. An example is the original XCELL factory
modeling system, which defined only four types of
blocks to model production systems. XCELL has since
been enriched along the historical development lines
followed by the other process networking modeling
techniques mentioned above but in a much more
conservative manner. However, the introduction of
new graphical objects has been resisted; new features
have been added only when deemed absolutely
necessary [Conway, et. al., 1992].

Schruben

3. PETRI NETS

Petri nets originated with the minimalist modeling
philosophy but have been enriched to include elements
needed for modeling stochastic discrete event systems
[Peterson, 1977]. A simple Petri net is a graph with
two types of vertex labels, called places (represented by
balls) and instantaneous transitions (represented by
bars). Places can be occupied by tokens (block dots).
The behavior rule is simple: when all of the input
places to a transition are marked with tokens, the
transition fires and a token is placed in each of the
output places for that transaction.

Simple Petri nets have been generalized to include
multiple tokens at a place, time delayed transitions
(graphically represented by thick bars), inhibitor arcs
(represented by having little circles replace edge
arrows), and branching (one of several output places is
chosen at random to receive a token once an
instantaneous transition fires). An inhibitor arc prevents
a transition from firing if its corresponding input place
1s occupied by a token.

An example of a generalized stochastic Petr1 net
(GSPN) model of the failure and repair process of three
machines i1s shown in Figure 1. The current marking of
this net with tokens indicates that two machines are
working (top place) and one machine is under repair
(lower right place). The timed transition at the far left
models the generation of machine failures. This
example can be found in the proceedings of the 1992
European Simulation Multi-conference in York,
England. Exponential delays are assumed for all timed
transitions. This graph shows most of the basic
graphical objects in a GSPN: timed and instantaneous
transitions, multiple tokens, and an inhibitor arc.

< (@ —
\
°
Figure [+ Exponential failure and repair of three machines

The model in Figure | is merely intended to give the
flavor of a GSPN model. There are many other
enrichments of Petri nets; some that are specifically

designed for discrete event simulation can be found in
[Torn, 1990].

Graphical Model Structures 243

4. STOCHASTIC STATE MACHINES

Stochastic state machine transition diagrams (SDs) have
vertices that are labeled with each of the different
possible states of a system [Heyman and Sobel, 1982].
The edges are labeled with the rates that the system
moves from one state to another. An example of a
stochastic state transition diagram for the above three
machine exponential failure and repair system is shown
in Figure 2. The failure rate is denoted as A and the
repair rate for a single machine is denoted as n. Each
vertex 1s labeled with the state denoting the number of
machines in good repair.

u 2u 3p

: Xé)——){sﬁ
S

(0" > 1)
-3 T 2A

Ficure 2. State Diagram for exponenliai failure and

Repair of 3 Machines

Both GSPN models and state transition models permit
analytical solutions for relatively simple systems with
exponential delay times. However, they quickly
become unwieldy when the systems being modeled are
even moderately complex. The exponential delay
assumption is critical for the analytical solution of these
models, but not necessary for simulation models.

5. EVENT GRAPHS

Event graphs (EGs) can be used to build models of any
discrete event system using just a single graphical
object. The vertices represent changes in the values of
system state variables. Edges resent the conditions
under which one event might cause the occurrence of
the other event as well as the time interval between the
two events.

The graphical representation of the basic modeling
object is as follows;

(1)
¢

Y
w

This edge is interpreted as follows:

if condition (1) is true at the instant event A occurs,
then event B will be scheduled to occur t minutes later.

If the condition is not true, nothing will happen. The
EG representation is completely general in that any
discrete event system (indeed any computer program)
can be represented using this object [Yucesan, 1989].
EGs epitomize the minimalist philosophy in that the
above object is all that is necessary to have a
completely general graphical modeling tool. Modeling
conveniences such as parameterized vertices and
canceling edges have been added as enrichments to the
simple EG definition [Schruben, 1992]. Detailed
analysis and definitions have also been developed
[Yucesan, 1989, Som and Sargent, 1989].

An event graph for the exponential failure and repair
for any number of machines is shown in Figure 3,
where failure and repair times are subscripted with f
and r respectively.

The vertices of this EG has been "marked" with
tokens that indicate how many instances of each event
are scheduled to occur in the future. There are 3
machines in this marking; two are working (left vertex)
and one is broken (right vertex).

Like Petri nets, the marking transition rule is simple:
when a scheduled event vertex occurs (it "times out"), a
token is removed from the vertex and tokens are placed
in all immediate neighbor vertices connected by exiting
edges with true conditions. The count of the tokens
gives the number of events that are scheduled in the
future.

r

s

t ,,
(N:N-1HN=N+1>
Yy S

Figure 3. Failure and Repair of
N(=:) Machines

The number of working machines is denoted as N. The
failure and repair times here may follow any
probability distribution and are not assumed to be
exponential.

In a state transition diagram, there 1s a vertex for
every possible state; in an event graph, there 1s a vertex
for each possible change in state (event). The state
transition diagram for N machines would require N +1
vertices. The event graph and the GSPN will not
change as more machines are modeled; more tokens are
merely added. However, the conditioning of the
exponential delay times in the GSPN changes while

nothing changes in the EG. By modeling only the
changes in state rather than every possible value of the
state, EGs allow systems that may have many states to
be represented with a finite graph. In fact, the state
diagram for a classical M/M/1 queue is a graph with an
infinite number of vertices whereas the EG model
requires only a single vertex.

The edges of state diagrams and EGs are also
complementary: state diagram edges are labeled with
rates of change, EG edges are labeled with the times
between changes. A combination of the two techniques,
where vertices are labeled with changes in state (like
EGs) and edges are labeled with rates of change (like
SDs) is currently being studied.

A key enrichment to event graphs is the concept of
parameterized vertices and edge attributes that permut a
basic event graph to be used to represent different
instances of similar subsystems. These graphs can be
hierarchically linked into a model of a larger system.
For example, an EG of a single generic machine cell
can be parameterized to represent different types of
cells which can be linked to a larger graph that models
a complete factory. Thus, a generic factory simulator
can be developed to an arbitrary degree of complexity.

A more detailed introduction to event graph modeling
can be found in the tutorial by the author in this year's
WSC proceedings.

6. SUMMARY

Several graphical techniques for specifying models of
discrete event simulations have been presented. All of
these graphs can be considered conceptually as
representing generalized automata driven by random
input processes [Wu and Chung, 1991], [Glasserman
and Yao, 1991]. The different approaches have been
described as primarily following a macro-modeling or
minimalist philosophy. The macro-modeling
philosophy has been successfully implemented in many
process network simulation languages. This approach
has the advantage of being easy to use within its
problem domain and the disadvantage of requiring new
graphical objects to expand its modeling capability. The
minimalist approach is used in GSPNs, state machines,
and event graphs. Event graphs have the advantage of
having only one graphical modeling object but the
disadvantage of requiring the modeler to understand the
somewhat abstract concept of a system event. GSPNs
and state machines quickly become so unwieldy as to
make them ineffective graphical approaches for
developing simulations of complex systems.

GSPNs have been demonstrated to have at least the
modeling power for simulation of generalized semi-
Markov Process (GSMP) models [Haas and Shedler,

Schruben

1988]. It is easy to model all of the objects in a GSPN
as an EG, giving EGs at least the modeling power of
the other approaches. Recently an algebraic structure
for GSPNs and GSMPs has been developed
[Glasserman and Yao, 1991]. Set structures for EVs
have also been proposed [Yucesan, 1989] [Som and
Sargent, 1989].

ACKNOWLEDGMENTS

I appreciate the opportunity to join SEMATECH
during 1992 and have benefited from many
enlightening discussions with the staff of the Modeling
and Statistical Methods Group.

REFERENCES

Conway, R., W. M. Maxwell, J. O. McClain, and S.
Worona, (1992), The XCELL+ Factory Modeling
System (release 4), Scientific Press.

Glasserman, P. and D. D. Yao, 1991, Algebraic
Structure of Some Stochastic Discrete Event
Systems, with Applications, Discrete Event
Dynamic Systems: Theory and Applications, 1, 7-
25.

Hass, P. J., and G. S. Shedler, 1988, Modeling power
of Stochastic Petri Nets for Simulation, Probability
in the Engineering and Informational Sciences, 2,
435-459.

Heyman, D. P., and M. J. Sobel, 1982 Srochastic
Models in Operations Research, Vol 1, McGraw-
Hill, 58-60.

Pegden, C. D., R. P. Sadowski, and R. E. Shannon,
1990, Introduction to Simulation Using SIMAN,
Systems Modeling Corporation.

Peterson, J. L., Petri Nets, Computing Surveys, 9.3,
223-252.

Pritsker, A. A. B., 1986, An Introduction to
Simulation with SLAM II 3rd. Ed., Halsted Press.
Schriber, T. J., 1991, An Introduction to Simulation

Using GPSS/H, John Wiley and Sons.

Schruben, L., W. 1992, Event Graph Modeling Using
SIGMA, (2nd release), The Scientific Press, S. San
Francisco, CA.

Som T. K. and R. G. Sargent, 1989, A Formal
Development of Event Graphs as an Aid to
Structured and Efficient Simulation Programs,
ORSA J. on Comput., Vol 1, 107-125

Torn, A. A., 1990, Simulation Graphs: A General Tool
for Modeling Simulation Designs, Simulation 317,
187-194.

Yucesan, E., 1989, Simulation Graphs for the Design
and Analysis of Discrete Event Simulation Models,

Graphical Model Structures

Ph.D. dissertation, School of OR&IE, Cornell
University, Ithaca, NY.

Yucesan, E., and L. W. Schruben, 1992, Structural
and Behavioral Equivalence of Simulation Models,
Transactions on Modeling and Computer
Simulation, (to appear).

Wu, J-H, and C-N Chung, 1991, Timed Finite
Automata as The Theoretical Foundation for
Simulation Modeling with Event Graphs, Technical
Report, Dept. of Dec. Sci. and Inf. Sys., University
of Kentucky, Lexington, KY

AUTHOR BIOGRAPHY

Lee Schruben, a Professor in the School of Operations
Research and Industrial Engineering at Cornell
University, is currently visiting SEMATECH in Austin
Texas.

