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ABSTRACT.

The subject of Perturbation Analysis (PA) is over ten
years old. A substantial literature has been accumulated.
It is no longer possible to cover every aspect of this
subject and for one person to know everything. This
paper nevertheless attempts to present a self-contained
tutorial on the state of the art as of the summer of 1992.
No inference should be drawn on topics and papers not
covered here.

1.INTRODUCTION.

The main tenet of Perturbation Analysis (PA) is that a
great deal of information is contained in the sample paths
of a Discrete Event Dynamic System (DEDS) beyond the
usual statistics collected such as the means and variances
of various output variables. Instead of looking at discrete
event simulation simply as a special case of statistical
analysis of experiments, namely a black box with input
parameters and final output results, we can take
advantage of our knowledge about the dynamics of the
DEDS and squeeze out additional useful information,
such as performance gradient and sensitivities from a
single experiment. In a broader sense, PA has to do with
the problem of doing simulation more efficiently than
before; or doing more performance evaluation for the
same computing budget. It has also been the thesis of this
author that DEDS share many conceptual commonalities
with continuous variable dynamic systems (CVDS)
governed by differential equations. Many of the successes
in the optimization and control of differential equation
based dynamic systems can be transplanted to the DEDS
domain. In fact, the analog to PA in CVDS is simply the
familiar idea of linearization and variational differential
equations.

This tutorial is composed of six sections. After
introducing notations and terminology, we discuss the
basics of Infinitesimal PA and its application to single run
gradient estimation in section 2. Section 3 is concerned
with the extension of IPA via the general notion of
“smoothing”. In particular we outline some new results in
this area . Section 4 introduces the notions of cut-&-paste
and finite PA. Here we view simulation simply as a way
of assembling (mapping) a set of random numbers and
parameter values. Performance evaluation under different
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parameters simply means different mappings of the same
set of random samples. Such a viewpoint naturally leads
to the discussion of the new standard clock approach to
simulation and the efficiency that can be achieved using a
massively parallel SIMD computer. This is discussed in
Section 5. Sections 6 and 7 conclude with some new
(1991-92) developments in stochastic optimization and a
listing of resources for further study.

1.1 Notations:

Let us introduce some notations first. X is a discrete
(possibly infinite) set of states, xe X, I'" another discrete
finite set of events, ae I', and I'(x), a subset of " for each
state x representing the set of feasible (or enabled)
events that can occur in the state x. There are lifetimes or
clock readings associated with each feasible event as
specified below. The clock readings tick down until one
of them reaches zero. The associated event is called the
triggering event in that state. Given the current state and
the triggering event, a state transition
function Xpexi=f(Xnow, triggering event) , instantaneously
takes the DEDS to the next state. (Note: randomness in
the state transition can be easily incorporated. We
omitted it for simplicity without loss of generality.) The
cycle then repeats successively generating a trace of the
(state, event) pair of sequences. Initially, with a starting
state, x1, we endow every enabled event “a” in x] with a
lifetime cg(1), aeI(x1). The smallest cg(1) determines
the triggering event, a*. We then advance time to the
triggering instant t*=t1=Tg+cg*(1). For successive states
x and for every new “o” enabled in these x we endow it
with a lifetime cq(n) if it is the nth occurrence of event
type o; for every old “a” left over from the previous state,
we use the remaining lifctime or clock reading as its new
lifetime in the new state. (We have adopted the so-called
non-interrupt version of the model. If interrupts occur, the
model can be easily modified). This way every event
enabled (or scheduled) sooner or later beccomes a
triggering event as its clock reading ticks down and
occurs at time Ty(at). The totality of the lifetimes cy(n) for
all n and all o defines a two dimensional clock
mechanism which is completely independent from the
state transition function and can be constructed
beforehand. The state-event sequence or trace together
with the time of occurrence of each and every (triggering)
event , Ty, constitutes a trajectory of the DEDS. To help
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fix ideas, consider a simple queue-server with random
arrival and service times. X is simply the set {0,1,2,3, ...
) representing the possible number of customers waiting
in the queue and being served; I' ={ arrival, departure};
I'(x=0)=({arrival}, I'(x#0)={ arrival, departure}. The clock
mechanism consists of two streams of events with random
inter-arrival and inter-service times which are generated
using given distributional information. The state transition
functions are very simple
n+l if xpow=n and a*=arrival

Xnext = i
n-1 if xpow#0 and a*=departure
The process starts with say, the arrival of a job which

transitions the state to n#0. The subsequent colloquial
description of the operations of such a FCFS queue-server
facility then easily determines the successive interarrival
and service time samples to be drawn from the clock
mechanism of two event streams. The trace or the
trajectory can be determined. Mathematically, we often
denote a trajectory simply as (6, &) where 6 are the
parameters characterizing the state transition function
and/or the clock mechanism and & all the random
occurrences in the DEDS. In the present example, 6
obviously is the parameters characterizing the arrival and
service distributions and & the lifetimes in the clock
mechanisms, i.e., the various samples of inter-arrival and
service times. Given a trajectory (6, ) we can evaluate its
sample performance L(®, &); and its average
performance J(6) = E[L®, £)] via a statistical
experiment, i.e., a discrete event simulation. In
perturbation analysis, we are often interested in not only
J(©) but also J(6+A0). We use the adjectives nominal and
perturbed to qualify J(6) and J(6+A68) as well as the
trajectories (0, £) and (6+A8, £).

The above description can be considered as a
mathematical specification of a discrete event simulation
experiment or formally as the Generalized Semi-Markov
Process (GSMP) characterization of DEDS. For more
mathematical details see Glasserman (1990) pp 27-31, Ho
and Cao (1991 § 3.3)

2. WHAT IS INFINITESIMAL PERTUR-
BATION ANALYSIS (IPA)?

2.1 A Short history and the Basic Idea

PA was a problem-driven innovation. In 1977, the author
was presented with an interesting consulting problem [Ho,
Eyler, and Chien 1979]. (Note M. Bello in a 1977 M.I.T.
Masters degree thesis also had a version of the idea of
perturbation analysis as applied to an M/D/1 queue, see
Bello (1977) and also Woodside (1984)). The FIAT
Motor company in Torino, Italy had installed a production
monitor system on one of their automobile engine

production lines which could be visualized as a simple
serial queueing network with finite queue (buffer)
capacity between servers (machines). The automatic line
monitoring system recorded service initiations,
completions, idlings and blockings of various machining
stations as well as the movement of the engine parts
among them, in short, a complete operating history of
the DEDS. A tremendous amount of production
information was being generated. The following questions
were asked: “Besides the standard statistical information
such as downtime, throughput, and utilization that were
being generated by the monitoring system from the
collected information, could this information be used
further for control purposes? In particular, we (FIAT)
were interested in whether or not the buffer spaces
between machines are optimally distributed for maximal
throughput given a limited budget for buffer spaces.” The
attempt to answer this question (Ho and Cao 1991 p.20)
led to the following three generalizable ideas:

(i) A parameter change (e.g., increasing the size of the
buffer space by 1) can generate perturbations in
the timing of events in the sample path of a DEDS.

(ii) Perturbations in the timing of one event (e.g.,
termination of a service period of a machine) can
be propagated to another event (e.g., via the
termination of an idling period at a downstream
machine).

(iii) Since all performance measures of a DEDS
depend on the timing of events on its sample
path, perturbations in the timing of events will
induce perturbations in the sample performance
measure, L.

Steps (i) - (iii) suggest a method to calculate efficiently
the perturbed performance L(6+A0, &) or the derivative
dL/d® of a sample path from x(t; 0, &) alone since all three
steps only require information directly observable on x(t;

0, &).

2.2 The Interchangeability Issue and the Monotonicity
Condition

IPA in a narrow sense is thus a technique for the efficient
computation of the n-dimensional gradient vector of
performance measure, J(0), of a discrete event dynamic
system with respect to its parameters (8) using only gne
statistical experiment of the system. This is opposed to the
traditional method of making n additional experiments
and taking differences to approximate the gradient vector,
ie.,

dI(©) _E[L(6+A0.)] - E[L(B.5)]
de AD

N N
Ly EL@®+80E) - L ¥ L©OF)
Ni=1 Ni=1

A6
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which is a numerically difficult task since we are dividing
the difference of two nearly equal random quantities by a
small number and are caught by the twin evils of noise
and nonlinearity. Instead, IPA proposes to calculate
directly the sample derivative dL(6,£)/d® using
information on the nominal trajectory (,€) alone. The
basic idea is this: If the perturbations introduced into the
trajectory (6,£) are sufficiently small, then we can assume
that the event string or sequence of the perturbed
trajectory (6+d6,£) remains unchanged from the nominal,
i.e., the two trajectories are deterministically similar in
the order of their event sequences. In this case, the
derivative dL(8,§)/d® can be calculated easily.
Essentially, once generated, perturbations in the timing
of events are propagated via the same event scheduler
(critical timing path) of the nominal simulation. The
computational steps are extremely simple and require
minimal modification of the simulation code. However,
averaging over the sample dL(6,£)/d8 we get

13 dLes) E[dL@,&)] _ - GELOY)
Ni=z1 @ @® do (1)

which raises the $64,000 question above since we are
interested only in the right side of equation (1) but PA
calcuates the lefthand side. In nontechnical terms, this
question translates to “How can you squeeze out
information about a trajectory / sample-path operating
under one value of the system parameter, 6, from that of
another operating under a different value, 6'=6+A6? Don't
the two trajectories behave entirely dissimilarly sooner or
later?” The intuitive characterization of the condition
under which the above question can be answered in the
affirmative (or IPA will give unbiased estimate to the
derivative of the expected performance) is as follows:

While the nominal and the perturbed

trajectories (0+A6,E) and (0,&) must

sooner or later differ no matter how small

we make A0, or equivalently, the

ensemble of trajectories (0+A6,%) and

(6,€) will differ on some member of the

ensemble if the ensemble is large enough

regardless of the size of A@ if we have a

finite time problem, the frequency of

occurrence of such difference is of order

A®. Furthermore, if the trajectory

difference is also small and of order A8,

then the average net effect of the

difference in the nominal and the

perturbed performance will be of order

A62 which is neglegible for the first

derivative calculation. In such cases,

Eq.(1) will hold [Cao 1985].
In other words, if the deviations caused by A between the
nominal and the perturbed trajectory are small and only
temporary, then IPA will give an unbiased estimate for
the quantity 0J/00. Glasserman (1991 ch.3), Glasserman
and Yao (1991) gave a precise characterization of this as

the Commuting (Monotonicity ) condition which

requires:

(i) an event once scheduled is never terminated
prematurely (the non-interrupt condition)

(i1) if the nominal and the perturbed event strings

differ only in order and not in the total number of
each event types, then the system from which
these event strings are generated must be in the
same state (or states that have the same enabled
event list) . This is also known as permutability
condition
Condition (i) prevents finite discontinuities from
occurring frequently and condition (ii) insures that event
order permutation creates only temporary divergence
between the two trajectories. A simple example for which
the C (M ) condition holds is a G/G/1 queue under service
and arrival time perturbation. Fig.1 illustrates the situation
where due to perturbation a departure and arrival event
change order.

The satisfaction of condition C (M) can be seen by
inspection. (For precision, we note there are technical
differences associated with the C vs. the M condition, but
these should not concern the tutorial nature of the current
discussion)

The classes of DEDS over which a simple IPA algorithm
is known to apply is fairly well understood by now. These
include,
A. Simple queueing networks: A simple network consists
entirely of FCFS, infinite buffer, single-server nodes and a
single class of customers with a state independent
Markovian routing mechanism. A GI/G/1 queue and
networks with general service and arrival distributions are
examples of simple queueing networks.

imple networks with multi-class mers in which
every node that is visited by more than one class of
customers is fed by only a single source. In such a
network, a customer cannot change the order of arriving at
a server with any other customer of a different class.
C. Networks with blocking in which every node with a
finite buffer is fed by a single source. In such a network,
no server can directly block two or more servers
simultaneously. A cyclic queue with finite buffers is an
example of such network.
D. Some networks with state-dependent routing
mechanism described as follows: For any (arrival or
departure) event o, let {Xq(a), ..., XN(a)) be the

partition of the states such that x and x' are in the same
subset X;(a) if and only if the transition probabilities for

the customer moving upon the occurrence of a are the
same in x and x'. Then the interchangeability holds if that
event o is the only event that can trigger a state transition
between two states that belong to two different subsets
X;(a) and Xj(a), 1#].
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Figure 1 Illustration of the Commuting (Monotonicity) condition

The main virtue of simple IPA is its extreme
computational simplicity . Only minimal changes in a
simulation program need to be made to enable it (see Ho
and Cao (1991 Appendix E and Chapter 3).
Multidimensionality of 6 adds very little to the
computational burden. Numerical stability is also a virtue
since no divisions by A® are involved. Under certain
assumptions one can also prove that it is the minimum
variance estimate since it uses common random numbers.
Experimentally, it demonstrates excellent variance
properties.

Lastly, two additional issues that we have not disccussed
in this tutorial due to space limitations are consistency of
IPA estimates (see e.g., Glasserman and Hu and
Strickland (1991) ,Wardi and Hu (1991)) and realtime
nonintrusive application of IPA to real systems (e.g., see
Cassandra and Abidi and Towsley 1990), and Ho and
Cao (1991 pp285-286))

3. EXTENSION OF IPA.

Of course it is easy to make up examples for which simple
IPA rules will lead to biased estimates of the performance
gradient, i.e., failure of Eq.(1). Primary examples of such
parameter sensitivity problems are routing probabilities
and multi-class queues where finite outcome or event
order perturbations can result from infinitesimal
parameter changes. Other examples of discontinuities are
performance measures that are inherently discrete, such as
the number of customers served in a busy period. In all
such cases, direct computation of dL(0,£)/d6 often yields
the value of zero. But for any &, there is a value of A8
that will cause a finite discontinuity in L. And for any A9,

there exist & w.p.1 that will produce a finite discontinuity
in L. The average of these discontinuous L(6,£) summed
over £ nevertheless defines a smooth J(8) that has a well
behaved nonzero slope [see Ho-Cao 1991 p.80]. Such
problems are said to be non IPA-applicable since we’ll
get biased estimates of the term dE[L]/d0 using the simple
IPA algorithms. Extensions of IPA to overcome this
difficulty proceed in two major directions. First and most
popular, we have what might be called the probability
based extensions which is based on the idea of
“smoothing”:

Infrequent occurrences of finite perturbations

are statistically equivalent to frequent

occurrences of infinitesimal perturbations. (S)
A specific example of this idea which we shall use in
many guises is the fact that a stream of Poisson events
with rate A can be modified to represent another Poisson
strcam with rate A-AA in the following two equivalent

ways:

(i) stretch the time axis of the Poisson stream by the
factor A/A-AX (this corresponds to perturbing
every event timing by an infinitesimal amount)

(ii) delete each event w.p. AN/A (this corresponds to

occasionally perturbing the inter-arrival times by
a finite amount).
The simplest example of such a device is the routing
probability parameter sensitivity. Consider the case of
routing customers to one of two possible servers with
differcnt mean service times s] or s according to the
proportion d:1-d as follows:

-s1ln (v)  0O<u<d,
S=

-s9ln (v)  d<u<l, )
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where u and v are both uniform random variables over [0,
1), and “d” plays the role of routing probability. Notice
that under the condition that 0<u<d (resp. d<u<l), u/d
(resp. (1-u)/(1-d)) is also a uniform random variable over
[0, 1). So instead of using (2) to determine service time
we can use

‘ spln (W) O<u<d,
s= d

-soln (28)  de<u<l.

\ 2" ©)

It can be observed that if we generate a service time from
Eq. (2), a finite discontinuous change can occur in s when
“d” is infinitesimally perturbed for “u” nearly equal to
“d”. On the other hand if we use eq.(3) instead, the
service time of every customer changes when “d” is
changed. The important advantage of using (3) is that the
service time changes of customers who switch between
servers because of the change of “d” are no longer finite.
These changes are now infinitesimal since switching takes
place only at values of “u” (not “v”) near “d”, i.e., when
s is near In(1) = 0. It is clear that the service time changes
are now of the order Ad. Thus, when switching takes
place, the discontinuities will be of the same order. On
the other hand, the probability that a customer in the
nominal path is to be switched is also in the order of Ad.
Therefore, the expected change in performance, caused
by switched customers, is of order (Ad)2 and can be
ignored in calculating the first derivative. This is
equivalent to saying that event order changes are
ignorable and IPA will give us unbiased estimates for the
sensitivities with respect to routing probability “d.”
Another version of this (S)-extension is to convert the
routing probability perturbation into an equivalent arrival
rate perturbation to the two servers (Ho and Cao 1991
ch.5). It is worth emphasizing that the basic notion of (S),
converting finite but infrequent perturbations into
frequent but infinitesimal perturbations or vice versa, is
present in both of the above cases.

More generally, the so-called smoothed PA or SPA
(Gong and Ho 1987, Glasserman and Gong 1989)
approaches the issue of Eq. (1), the interchangeability
question, through a slightly different form of smoothing.
We first decompose the expectation in (1) into two parts,
a conditional expectation and another expectation over the
conditioning variables, i.e.,

dE[L(0.%))/d6 = d E,E/,[LO,E))/d6
= E {d[E/,[L(6,5)]/d6) @

We can expect E,[L(6,£)] = L(8,2) to be smoother than
L(0,£) and hence may make the interchange between E;
and d/d@ possible. Note that even though L(6,0) may be
discontinuous, sufficient amount of averaging can make
E[L(6,£)] differentiable. In fact, the usual brute force way
of computing sensitivity via

dL/d6=  lim L[EL(emegi)-E L)) (5)

n—eo, AB—0N =) i=1

is a simple statement of the above fact. Now the trick with
Eq.(4) is to average just enough to avoid discontinuities
but not to require the duplication of another experiment as
in the brute force case. Between the extremes of
differentiating the expectation and taking expectation of
the differentiation, a whole spectrum of partial
expectation and smoothing possibilities exist . In fact,
Glasserman and Gong (1989) showed explicitly that for a
large class of problems with inherent discontinuities in
performance SPA can yield unbiased derivative estimates
by converting the differentiation with respect to L to
differentiation with respect to the probability of the
occurrence of such discontinuities via appropriate
conditioning. The most recent reference is Fu and Hu
(1992) which also leads to the next issue.

Of course, SPA begs the question of what to use for the
conditioning variable “z”? Both the earlier and recent
developments (Bremaud andVasquez 1991, Bremaud and
Gong 1991, Shi 1992, Dai and Ho 1992) suggest a natural
decomposition and conditioning of the difference
L(6+A6,5)-L(6,E) on the fact that each event in the
nominal path has a probability of being deleted due to
perturbation (recall again the example of the equivalent
ways of generating Poisson stream with rate A-AA
mentioned above and the (S) smoothing idea), i.e.,

d = jim L E[L(6+A8,E) - L(6,E)
@ AO—>0A8

=Yy lim -LE[L_-L)li
iZAelT)OAG (L] (6)

where L_j is the sample performance with the ith event
deleted as a result of AB. Now we cvaluate the conditional
expectation of L_j -L as

=y lim LLin®-iae) =3 (L)
%AéﬂOAO[( r e ] iZ[(Lr )E-] 0

where dP_i/d0AS is the probability that the ith event will
be deleted due to A6. Note, once again we avoid the
problem of dividing through by A8 by being able to
differentiate the probability P_j . Also P_; is usually
directly related to the given elementary random variable
distributions. Differentiating it does not present numerical
difficulties as in the likelihood ratio (LR) method where
one is differentiating the distribution of the stochastic
process x(t). In fact,we can view (7) as a kind of
improved LR method where we avoid the variance
problem of differentiating the sample path distribution
and the term L_;j as a kind of control variate to further
minimize the variance [Shi 1992]. Of course, (7) merely
represents a form of intelligent brute force calculation of



236

(1). The term L_; - L can be easy or complex to compute.
Regeneration cycles certainly help (in the sense of
reducing the summation over i). A Markov assumption
here or there helps. Also altecrnatives to L_j-L, such as L4
-L and L4 -L.j terms (With the obvious notational
interpretations) to provide computational flexibility in the
calculation of (5) and (7) have been given by Shi (1992).
Other authors, Dai and Ho (1992), and Bremaud and
Gong (1991) showed other alternatives, such as instead of
deleting an event, perturbing its consequence, the next
state. Otherwise [6] and [7] remain the same. Fu (1990)
also give another application of SPA to inventory
systems.

The other extension to IPA is Calculus based. It starts by
considering the replications in (1) as decomposed along
event sequences, 6=€1, €2, . . ., €j , . . . where ¢; is the ith
event of the sample path x(1), i.e.,

3(0) = z HL(x(6,8)) | o]

and
4@ _ ¢ dEL(x(;6,)) | 6] ®
déd o de

where the conditional expectation is taken over all sample
paths that are deterministically similar to the event
sequence , 6. The boundary of the integration (conditional
expectation) is a hyper cube, R(g), in the multi-
dimensional event sequence space with edges defined by
the upper and lower limit on the timing of the events
before they change order with their neighboring events.
Thus

E[L(x(t:6,8)) | o]
do

= _d_J L(x(1;6,8))dFx/c )
R(o)

Now by elementary calculus,

4 J L(x(t; 6,)dFx /g

_ J AO8) g ., dR

The first term on the r.h.s. of (10) is simply the usual IPA
term and can be calculated by simple IPA rules. The
interchange of integration with differentiation is valid by
definition of deterministic similarity. The second term is
the correction term that must be added. Gaivoronski-
Sreenivas-Shi (1992) have many explicit examples
showing the validity of Eq.(10) and the solution of
otherwise non IPA-applicable problems. dR/d6 can be
thought of as a bias correction term which may be easy or
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difficult to calculate. However, Eq.(10) offers valuable
insight, e.g., consider the Lindley equation for system
time of a GI/G/1 queue. We have,

Tn+ Sn+1- An+1 if  Tn- An41 20
Tn+1 =

Sn+1 otherwise
and

I dfn S+l i Tp-Awn20
dTntl 9/ @ do (1)
o] ‘@nﬂ_ otherwise
do

But to prove (11) we must essentially prove that
perturbation in the boundary condition Tp-Ap+120 will
not affect adversely (i.e., to first order) the validity of
(11). This fact is, of course, well known in terms of the
by now familiar illustration of Fig.1 in §2.

4. FINITE PERTURBATION ANALYSIS

More generally, PA is a mind set concerned with the
EFFICIENT exploration of the performance response
surface J(0) via multiple experiments at different 6’s. In
particular, we submit

(1) A sample path of a DEDS (real or simulated)
inherently contains information about the system far
beyond the usual summary statistics, such as time or
ensemble averages of variables of interest. If this
information is collected in time and processed
appropriately, it can yield gradient and other useful
performance data. For example, by analyzing a long
sample path of a G/G/1 queue at one value of its service
rate, one can deduce its performance at all other values of
the service rate (Gong & Hu 1991).

(i) If the model of a DEDS did not change except
for some parameter values, then the separate generation of
sample paths in traditional simulation for ”what if" studies
entails a great deal of duplicated effort that can be and
should be leveraged to improve computational efficiency.

In other words, Finite PA takes the viewpoint that
simulation is a mapping of (0, the system parameters, and
E, a sequence of u.i.i.d. random numbers € [0,1)) to L.
L(0+A6,E) is merely a slightly different mapping.
Particularly in view of the GSMP formulation presented
in §1, we note that the clock mechanism which is § need
not be duplicated. Generating a different trajectory
(6+A6,E) means picking out and assembling different
pieces of the clock mechanism according to the state
transition rules in the structural part of the GSMP. One
immediate consequence is the cut-&-paste idea of Ho &
Li (1988), Ho & Li & Vakili (1988) under Markov clock
assumption and the related augmented Markov chain
approach of Cassandras & Strickland (1988).
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4 x(t)

_l_.'— a statistically equivalent path
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Figure 2 Markov Trajectory under “cut, insert and paste”

Basically, we view a sample path generated under the
system parameter value of 8 as made up of many
segments each of which operates under state sequence
invariance, i..e., so long as the states of a DEDS
experiment are the same, we can append or cut pieces of
the trajectory arbitrarily. By appropriately “cut, insert,
and paste-ing” together different segments one can in fact
regenerate sample paths which are statistically
indistinguishable from what would be generated under
0+A0. Fig.2 pictorially illustrates this for a Markov
trajectory.

The “cut-&-paste” idea can also be viewed as a dynamic
system extension of the rejection method of random
variable generation (Fishman 1988). In this view,
trajectory generation for a number of structurally similar
but parametrically different systems can be efficiently
carried out in parallel minimizing duplications. In
particular, massively parallel SIMD (Single Instruction
Multiple Data) computers are ideally suited to carry out
such parallel simulations. Since experiments rather than
the simulation procedure is distributed or parallelized, no
synchronization problem (Fujimoto 1989, Rego &
Sunderam 1992) exists and scalability approaches the
theoretical maximum. This leads to the idea of the
Standard Clock (SC) approach to parallel simulation
which is a radical departure from traditional simulation
methodology.

5. STANDARD CLOCK AND PARALLEL
SIMULATION

Starting with the assumption that all random phenomena
in the DEDS are exponentially distributed, we generate a
single Markov clock, called the standard clock at the rate

A=Y Aj
i

where A is the rate of the ith event type (arrival, service,
etc.). In other words, this is the maximal rate at which
events can possibly happen in the system. Now this
maximal rate must be THINNED or filtered due to
perturbations and/or feasibility. For example, no departure
is allowed from a server if it is idle. Procedurally, the
method starts by picking up an event from the SC stream.
We use a ratio yardstick and a random number ue [0,1) to
determine the type of this event as in Fig. 3

Once the event type is determined, we simply check
against the feasible event set, I'(x), for the feasibility of
this event in the current state. If feasible, we accept the
event and use it to trigger the transition to the next state
according to the state transition function, Xpext=f(Xnow,
triggering event). The cycle repeats. Note that this
procedural cycle is the same regardless of which
experiment we are doing. In other words, we can do
parallel experiments using an SIMD massively parallel
computer. Thousands of replications or parametrically
different but structural similar experiments can be run in
parallel with no synchronization problems and taking only
as much time as a single run. We only need to keep a
separate state for cach separate experiment/replication.
Perturbation in system parameters will produce different
states which will cause the same event type to be accepted
or rejected by different experiments. Note also if rate
perturbation on A; is desired, we only need (o introduce a
perturbed yardstick similar to Fig.3 resulting in different
event type determinations for different experiments. No
other changes are needed. Fig.4 compares this SC
approach with the traditional simulation approach on
sequential computers. Note that here we take maximal
advantage of the separation and independence of the clock
mechanism from the state transition function in the GSMP
formalism.

Two additional observations:
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(1) The Markov clock assumption, while
fundamental, can be relaxed via approximation. We can
use the state not only to accept/reject events according to
['(x) but also to shape the distribution such that the means
and variances of the resultant event streams accepted can
be arbitrarily matched. (This is simply an efficient way of
implementing the “method of stages” approximation to
arbitrary distributions.) The point is that in SC the rule of
system operation, namely the state transition function, can
be totally arbitrary and used to suit our simulation. We
submit that being able to accommodate complex rules is
much more important in simulation than in maiching
exactly the distributions of various event typcs.

(ii) The SC is also suited for real time application,
i.e., using the event traces of a real world operation to
generate in parallel other “what-if” experiments as the real
system evolves. Thus, on-linc monitoring and control
becomes a real possibility. The details of SC can be found
in Ho & Cao (1991 §7.1), Vakili (1989,1990ab), Ho & Li
& Vakili (1988), Ho & Cassandras & Makhlouf (1992),
and Vakil & Mollamustafaoglu &Ho (1992).

computation occasionally repeated for each separate experiment

SC and Traditional Simulation Methodology

6. STOCHASTIC AND ORDINAL
OPTIMIZATION

The raison d’etre for PA is, of course stochastic
optimization via simulation. For a fixed computing
budget, the key issue faced by any kind of iterative hill
climbing scheme other than theoretical convergence is the
trade-off between estimating accurately the gradient vs
taking more steps of the iterative process. Experimental
evidence seems to favor taking more steps. There is a
large literature in general . For the present context, see
Suri-Leung (1989) and Chong & Ramadge (1992).

Finally, it is worthwhile to emphasize that the purpose of
design and performance evaluation of systems is to find
good, better, or best designs first. Then we worry about
“how good” is the selected design or designs. In short,
ordinal optimization comes before cardinal optimization.
The main virtue of ordinal optimization is this:

The relative order of performance of a

system as a function of parameter values is
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insensitive to errors in the estimation of the
performances (Ho-Sreenivas-Vakili 1992)

For example, if we estimate the performance of a sysiem
under 200 different parameter designs very approximatcly
via simulation and pick the designs corresponding to the
top-12 observed performances, then there is 50-50 chance
that at least one actual top-12 design belong in the picked
set even if the performance estimation error has infinite
variance.

Given this fact, instead of trying to successively improve
upon a design sequentially (e.g., by the traditional way of
hill climbing/steepest descent), and spending a large
effort to insure the accurate estimation of these
intermediate results which will be eventually discarded,
we propose to simultaneously and approximately evaluate
many designs in concert with simultaneous simulation
experiments as discussed above in § 4. Not only does this
approach provide us with a global view of the response
surface often ignored in local hill-climbing types of
procedures and permits quick localization of promising
search regions, but it also allows for taking maximal
advantage of ideas, such as approaches based on order
statistics, genetic-like search , etc. See Deng & Ho & Hu
(1992) , Garai and Ho and Sreenivas (1992)
Vakili,Mollamustaflaoglu & Ho (1992). Space limitation
prevents us from elaborating on this. But it is an integral
part of doing efficient simulation for performance
optimization.

7. CONCLUSION AND RESOURCES FOR
FURTHER STUDY

We submit that the subjects of simulation and stochastic
optimization are entering a new age. No less than four
major federal agencies have identified “Simulation and
Modeling” as a critical technology for the ‘90s (U.S.
Department of Commerce, Emerging Technologies: A
Survey of Technical and Economic Opportunities, Spring,
1990; U. S. Department of Defense, Critical Technologies
Plan, March 15, 1990; Council on Competitiveness,
Gaining New Ground: Technology Priorities for
America’s Future, 1990; Office of Science and
Technology Policy, Technology Critical to Economic
Prosperity and National Security, April 25, 1991.)
Instead of merely being a subset of statistics and
emphasizing output analysis, a whole range of new
conceptual and analysis problems in simulation and
modeling taking into account the dynamics of DEDS, the
impact of new hardware technology, and a new mind-set
are awaiting exploration and solution.

For further study on PA, the books by Glasserman (1990),
and Ho & Cao (1991) and the tutorial article by [Suri
(1989) and the taxonomy article (Ho & Strickland 1991)
should be the first sources. Glasserman & Glynn (1992
this proceeding) has a turorial on advanced aspects of
IPA/LR. These sources contain extensive references to
other articles on PA which now total over 100 not all
listed below. The Journal on DEDS, and the IEEE
Transactions on Automatic Control regularly publish new

articles on PA. An e-mail bulletin board on PA/DEDS
also exists c/o padeds@virginia.edu.
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