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ABSTRACT

Over the last two decades, discrete simulation model-
ing has matured from “the tool of last resort” into one
of the most flexible tools available. Simulation model-
ing is an experimental activity in which model behavior
is observed to gain insights about the underlying sys-
tem. Simulation modeling has evolved over the last 30
years by establishing sound theoretical foundations, by
developing more powerful and easy-to-use tools, and by
seeking the integration of these simulation tools with
existing information systems. In this paper, we survey
the ways in which Artificial Intelligence (Al) tools and
databases have been used to develop enable both model-
ing support tools as well as new simulation modeling
methodologies.

1. INTRODUCTION

Simulation modeling refers to the imitation, using a
computer, of the behavior of a "real” world system,
with the intent of observing the system under various
experimental conditions. Many of today's systems are
so complex that gaining an understanding of the multi-
ple interactions among components cannot be supported
by analytical tools. Thus, an effective way to analyze
such a system is to devise an abstract model of it,
simplify the model in such a way that superfluous sys-
tem details are removed without loosing validity, and
observe a simulation of the simplified model under the
desired sets of experimental conditions. Since its be-
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ginning, the simulation modeling process has followed
this approach (see Figure 1.)

A study of a system starts when the existence of a
problem with the real system is noted, when it is not
possible to experiment with the real world system, or
when the system is under design. Management needs
and expectations must be carefully assessed by the
modeler who, in return must determine whether or not
simulation is indeed an adequate tool for the analysis of
the system under scrutiny. In other words, the modeler
must establish a set of assumptions under which an
analysis technique, or a combination of techniques, is
applicable, feasible and sufficient.

When simulation modeling is used, the modeler will
gather data and performs proper statistical analysis to
support the study. When there is no data available, the
modeler must define the inputs to the model about the
system using rules of thumb and/or personal experi-
ence.

A conceptual model of a system must be devised and
converted into a computer model. The modeler resorts
to tools such as model generators, simulation packages,
and so on, to make the transition less difficult and less
time consuming. The digital model must be thoroughly
verified and validated. The reliability of the digital
model depends on the quality of the verification and
validation processes. Verification entails assuring that
the digital code of the model performs as expected and
intended, and validation seeks to show that the model
behavior represents that of the real-world system being
modeled.

With a reliable and accurate digital model, the mod-
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eler proceeds to the experimentation phase. Statistical
experiments are designed to meet the objectives of the
study, and the model is observed and analyzed within
the framework of multiple experimental conditions.
Upon completion, the modeler prepares a set of rec-
ommendations into a management report which includes
implementation and operations guidelines.

Providing adequate computer-based support for the
SMP has been a non-trivial endeavor.  Simulation
modeling has relied heavily on the creativity and intu-
ition of its users to carry out some of the tasks in the
SMP, such as model abstraction and design of experi-
ments. Furthermore, since the experiment is conducted
using a computer, the effective use of it had required
"guru” level computer programming skills. These facts
had rendered simulation modeling the tool of last re-
sort. However, such perception has changed over the
years mainly due to two factors: 1) the recognition by
the experts in the field that the conceptual stage of the
SMP can benefit from quantitative and systematic pro-
cedures to stimulate the generation of alternate models,
and 2) the incorporation of enabling technologies from
various areas of computer science such as artificial in-
telligence (Al) and databases.

Up until 1960, all simulations were written in a gen-
eral purpose programming language such as FOR-
TRAN. Tocher and Oren (1960) changed the trend by
recognizing that there were some common functions
among the models being simulated. A very important
aspect of this change was the emphasis given to the
productivity of the modeler and the modeling process
itself. Then, through GASP II [Prnitsker & Kiviat 1969],
first discrete event library, GPSS [Schriber 1974,
Gordon 1975], a processs oriented language, and
SIMULA [Dahl & Nygaard 1967, Eklundh 1979], an
object oriented language, support for the idea of com-
mon functions was provided, as well as the means of
simulating at a higher level of abstraction. During the
1980's, old and new tools began incorporating more ca-
pabilities, including databases and graphics. This re-
sulted in powerful simulation tools, such as SLAM II,
TESS [Standridge 1985], SIMAN/CINEMA ([Pegden
1984, 1991], INSIGHT [Systech 1985], and domain
specific packages, such as MAP/1 [Miner & Rolston
1984], and STAR*CELL ([Steudel & Park 1987],
SIMFACTORY [Russell 1983], WITNESS [Murgiano
1990], AutoMod II [AutoSimulations 1989], and
COMNET II.5 [Mills 1988].

Paralleling these developments, new concepts and
formalism were being developed, and the importance of
simulation environments was further stressed, so as to
support not only the coding and execution of the SMP,
but also data management, model abstraction and def-
inition. TESS [Standridge (1985)], for example, inte-
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grates model building, simulation, analysis, and presen-
tation capabilities on top of a database.

These developments led to a rethinking of the role of
simulation languages and packages. Many experts had
considered a general purpose simulation language
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Figure 1: The Simulation Modeling Process
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fundamental for simulation modeling. However, this
raised questions about how fundamental the simulation
language truly is? Could simulation modeling be done
without the analysts being concerned with the pro-
gramming language? Is it possible to reuse simulation
models? Is it possible to connect existing information
systems to the simulation modeling system? Is it
possible to simplify the model construction process?
Seeking answers to these questions has brought us to
pursue the marriage of Al, data bases, and simulation to
design and implement simulation environments.

In this paper, we survey the impact of Al and
databases on discrete simulation modeling. This survey
has been organized in two areas: 1) Al and Simulation,
2) Databases and Simulation. Al, databases and simu-
lation as a triplet is discussed through some examples.

2. A.I. AND SIMULATION MODELING

Artificial Intelligence (AI) has been defined by many
in different and controversial ways. One useful defini-
tion, however, is that given by Rich & Knight [1991]:
"Al is the study of how to make computers do things
which, at the moment, people do better." Therefore,
Al attempts to produce machines that are able to see
(vision), speak (speech), talk in a human language
(natural language processing), and reason based on
formal knowledge and past experiences (expert systems,
neural nets). Problem solving is one of the main sub-
jects of Al research. Al strategies for problem solving
seek to provide a general representation of the problem
and allow the computer to search for a solution within
the boundaries set by the nature of problem.

Although Al and simulation are two disciplines
which matured independently, they have developed a
common domain: that of problem solving. The prob-
lem solving paradigm in simulation modeling is mainly
a search; thus, it parallels the problem solving
paradigm in AI (Table 1, Rolston 1988). The goal of
the search is to find the "combination of parameter val-
ues that will optimize the response values and the con-
trollable variables of the system.”[Shannon 1984] Al,
in particular knowledge based systems, may be in-
volved with computer simulation not only in the model
building process, but also in selecting from among so-
lution methods, in organizing experiments, and in the
analysis of the experimental results obtained.

The simulation community has studied carefully the
potential of Al techniques in simulation [O'keefe 1986,
Reddy 1987, Shannon 1984, Shannon, Mayer,
Adelsberger 1985, Zeigler 1984 & 1987, Klahr 1984]].
It has become clear that these two fields can be com-
bined in various ways, using natural language and/or

knowledge based systems (KBS), as shown in Figures
2a through 2c.

One way of interaction i1s to embed a KBS within a
simulation model (Figure 2a.) The model would inter-
rogate the KBS as to whether the current solution satis-
fies the objectives set forth or not. The simulation
model can be developed using the classical simulation
methodology, with an interaction window to query the
KBS at the end of the execution of each run.

Another way is to embed a simulation model within a
KBS (Figure 2b). In searching for the solution of a
given problem, the KBS would halt the search momen-
tarily, it would query the given simulation model for a
result value, and continue its search towards the goal.
Again, the simulation model may be built using classi-
cal simulation methods with an interaction window as
before; however, this time the simulation model has a
passive role. It only executes when the KBS decides
that it is necessary to do so. This approach to merge
both fields allows for more than one solution method to
be used if so required.

A novel approach has been to develop new simula-
tion systems using Al-based techniques and tools
(Figure 2¢). This approach has been sought because the
classical approach to simulation modeling can only an-
swer questions of the whar-if type. It can not answer
questions of the type why?, how?, and ever/never?. In
other words, under the classical approach to simulation,
it is not possible to query why an entity behaved the
way it did or how a particular solution was reached.
[Erickson 1985,Rothemberg 1989]

It has also become apparent that in order to achieve
reusability of models, or of model components, support
tools must be designed and implemented using object
orientation. This concept has been with the simulation
community since the 1960's (SIMULA); in fact, SIM-
ULA had a major impact in establishing the formal con-
cepts of OO [Khoshafian & Abnous (1990)]. Although
the OO paradigm has assumed a number of different
names in the literature (e.g. units [Bobrow & Winograd
1984], frames [Fikes & Kehler 1985, Minsky 1975],
actors [Klahr, Faught & Martin 1980], and concepts
[Kung 1990]), the basic notion of an object is to orga-
nize and store pieces of information relating to a single
concept into a single location; thus, it provides a way to
describe systems in terms of its components (objects)
rather than in terms of procedures. The net result is an
improved comprehensibility of simulation experiments
by model users and decision makers.

Most of the implementations of object orientation
concepts involve great overhead processing, and they
view the world through the object structure only, but
there are other kind of knowledge that does nor fit an
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Table 1: Problem solving in Al and Simulation

Artificial Intelligence

Simulation Modeling

* Define a problem environment as a collection of states. * Define a system in terms of objects and the objects

characteristics.

* Define start states within the space to represent initial * Establish a set of input parameters as the initial con-

problem conditions.

ditions of experiment.

* Define goal states that lead to acceptable solutions. * Define the state space for each output variable so as to

satisfy objectives.

* Define a set of operators to guide the changes from one * Build a digital model of the system.

state to another
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Figure 2: Approaches for merging Al and Simulation modeling
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object; thus, other approaches have been explored.
One of the most promising methodologies for intelligent
simulation is the production rules approach. Rule-based
systems use an "IF A, THEN B" framework for knowl-
edge representation. Rules constitute a formal represen-
tation of policies, strategies or recommendations. The
condition portion of a rule is often a series of predicates
that test properties about the current state of the system.
The action portion of a production rule then changes the
current state of the system. See Genesereth & Ginsberg
(1985) and Hayes-Roth (1985) for further treatment of
this concept.

Rules are used for multiple purposes in simulation.
There are rules to define the behavior or methods which
are to be used by objects, rules to test the model for
completeness and validity, and rules to drive the model
towards goal achievement. When used in conjunction
with objects, production rules are used to describe the
steps that allow the assertion of new facts into the
knowledge base.

Validation and verification can be supported by a se-
ries of production rules about completeness of the spec-
ified model and flow of entities (objects) through the
system. For example, in a complex manufacturing fa-
cility with many stations and products made of many
parts, it is fairly easy to leave out the definition or dec-
laration of a sub-assembly component (object). The
missing component can be detected by a rule such as

IF product P1 is to be assembled at station A1 AND
object S1 is-part-of product P1 AND
S1 is not initially located at A1 AND
S1 is not in routed to A1 AND
S1 is not the output of any station

THEN print "object S1 has not been defined” AND
display all objects that are part of P1 AND
request correction of P1 definition

Production rules are a promising approach to drive a
model towards a specified goal. For instance, suppose
a service facility (e.g. a medical clinic) is to be studied
using simulation. One of the goals of the study is to
determine the optimum number of doctors to have on
duty, so that patients average waiting time is within an
interval (a,b), where a < b and a,b > 0. A possible
rule to accommodate this goal may be

IF  average waiting time is greater than B AND
number of idle doctors is greater than 0

THEN add 1 to the number of busy doctors AND
subtract 1 to the number of idle doctors AND
continue

IF  average waiting time is less than A AND

the number of busy doctors is greater than one

THEN subtract 1 to the number of busy tellers AND
add 1 to the number of idle doctors AND
continue

As in the case of OOP, production rule systems have
failed thus far to provide a global modeling capability
for simulation studies. However, when combined with
OOP, rule based systems have greatly enhanced simu-
lation modeling. Zeigler (1987,1989) for example, has
taken advantage of the similarity between OOP and dis-
crete simulation formalism to develop an environment
for model construction. Discrete models are built in a
hierarchical modular manner, successively putting
smaller systems together to form larger ones.

ROSS [Klahr, Faught & Martin 1980] is a rule ori-
ented simulation system developed by the RAND cor-
poration. ROSS is an interactive system implemented
using LISP. ROSS was developed specifically for war
gaming. Real world systems are modeled as objects.
Messages are passed between objects, and IF-THEN
rules describe the behavior of the objects. The user
may halt the simulation at any time, modify the model,
and continue the simulation.

KBS [Fox & Reddy 1982, Reddy & Fox 1982] is a
knowledge based simulation system developed at
Carnegie-Mellon. Like ROSS, it incorporates OOP to
describe the real world. Unlike ROSS, it allows goals
describing the performance criteria of model compo-
nents to be attached to objects, and it informs the user
whether the goals were met.

Pure Al-based simulation systems tend to execute too
slowly to obtain statistically significant results in a rea-
sonable time frame.[Futo & Gergely 1989] Therefore,
other research efforts have taken the approach of devel-
oping intelligent, automatic programming interfaces for
existing and reliable simulation tools. Out of necessity,
these systems tend to be limited to a specific domain
such as automated guided vehicle (AGV) systems
[Brazier 1987], electronic assembly [Ford & Schroer
1987], flexible manufacturing systems [Haddock &
Davis 1985, Mellichamp & Wahab 1987], and com-
puter networks [Haigh & Bornhorst 1986, Murray
1986].

Serious knowledge based simulation systems deal
with large amounts of data and, thus, need to possess
the means to access data efficiently. The development
of powerful database management systems provides an
opportunity to add the needed data handling capabilities
to Al oriented simulation.

3. DATABASES & SIMULATION MODELING

The idea behind database concepts is the separation
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of data manipulation and data organization as much as
possible, so that data can be used by both the program-
mer and the non-programmer. This objective is also
present in the development of environments for simula-
tion modeling. A simulation modeling environment
seeks to separate systems description, model definition,
and model execution as much as possible, so that the
model user may concentrate on the modeling aspects of
the SMP rather than in the details of writing computer
code.

Over the years the database field has evolved to a
point in which commercial database management sys-
tems (DBMS) can be used as the center piece of a
modeling environment. Three main data structures
have been developed for databases: hierarchical, net-
work, and relational.

Under the hierarchical model, a database "...consists
of an ordered set of trees - more precisely an ordered set
consisting of multiple occurrences of a single type of
tree” [Tsichritzis & Lochovsky 1976]. A tree, in this
context, consists of a root (parent) node from which one
or more lower-level (child) nodes derive. From the
simulation view point, this data model offers great flex-
ibility and a natural schema for the description of systems
to be modeled. However, most hierarchical DBMS re-
quire an in-depth knowledge of the physical storage of
the records. Thus, merging a hierarchical DBMS to a
simulation language has been a cumbersome task.

An evolution from the hierarchical model is the net-
work data structure. As the hierarchical model, it con-
sists of trees, each tree beginning with a parent node and
having one or more children. Unlike the hierarchical
model, it allows a child node to have more than one par-
ent [Date 1985, Bachman 1969]. Therefore, a network
database has two sets of trees: a set of records and a set
of links.

A step forward has been the relational model. As pro-
posed by Codd (1970,1990), it "...deals with tuples by
means of their information content, not by means extra-
neous to the tuple such as tuple numbers, tuple identifiers
or storage addresses."” Furthermore, it requires the exis-
tence of a data sub-language based on applied predicate
calculus. During the 1980's, the Structured Query
Language (SQL) [Hursch & Hursch 1988] became the
sub-language of choice. Through SQL and its exten-
sions, the relational model allows the incorporation of se-
mantic information through special constructs such as
associations, properties, and entities [Codd 1979,
Gardarin & Valduriez 1989], classes and hierarchies
[Blaha et.al. 1988, Goldberg & Robson 1983, Hammer &
McLeaod 1980].

The potential of this model for applications other than
business has been discussed by many. The work done by
Smith & Smith [1977] clearly depicts a relational model

that can be manipulated to hold various types of entities,
including hierarchy-like entities. Through the concepts
of aggregation, (which refers to an abstraction in which a
relationship between objects is regarded as a higher level
object) and of generalization, (which refers to an abstrac-
tion in which a set of similar objects is regarded as a
generic object), it is possible to represent systems that are
hierarchical by nature.

Stonebraker, Anton & Hanson (1987) have suggested
that the power of the relational model be enhanced to
support objects. They proposed that a field in a database
be allowed to have a value that is a collection of com-
mands in the query language supported by the relational
DBMS. Although this 1dea tends to violate the atomic
property of each datum in relational theory, it seems to
be the most appropriate solution to address situations
where objects with unpredictable composition are needed.

The prior idea was introduced to the simulation do-
main by Ketcham (1986) with MBS, where he incorpo-
rated function names as part of the information in the hi-
erarchical schema. He configured his custom made
DBMS engine in such a way that the engine would look
into a procedure field and then into the MBS library to
match the content of the field against executable code in
the library. MBS has undergone a great deal of refine-
ments and has been renamed from MBS to IBIS [Ketcham
Shannon & Hogg 1989].

Ketcham's initial work carried with it the drawbacks
of the hierarchical model. To overcome them, Ghoshal
(1988) took Ketcham's schema definitions and converted
them to a relational-based scheme using the format given
by Smith & Smith (1977). Miller & Weyrich, Jr. (1989)
have worked on the design and implementation of a simu-
lation environment that integrates a process-oriented
simulation language and a database system with object-
oriented extensions. Users may interact with the system
by formulating SQL-like queries to retrieve information
stored from previous simulations.

Centeno (1990) reports the design of an integrated
simulation modeling environment (ISME) which utilizes
ORACLE, as the RDBMS, SIMAN as the simulation
model language, and C as the communication protocols
development language.

In the conceptualization of ISME, several tools are
vertically integrated through a common user interface.
Thus, the full realization of such an environment is based
on the design and development of an integrated manage-
ment system (IMS) that will allow a smooth integration
of a collection of software tools for designing, writing
and validating simulation models, preparing model input
data, analyzing model output data, and designing and car-
rying out experiments with the model.

Conceptually, ISME provides support throughout the
entire modeling process in two ways. First, it provides a
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network of knowledge-based software tools to support
activities in the modeling process, e.g. model conceptual-
ization, solution method(s) selection, statistical analysis,
and model building. Second, ISME supports various
types of users by providing tools to satisfy individual
user requirements, through an interaction mechanism that
is natural to the user. For instance, the needs of a system
configurer vary greatly from those of a corporate officer
or line manager (decision makers.) The system config-
urer tailors user capabilities to a particular domain, and
incorporates domain specific knowledge into the envi-
ronments knowledge bases. Thus, the system configurer
requires access to technical tools such as 4th generation
languages and the DBMS itself. In this sense, the system
configurer may want to swap back and forth from ISME's
common interface to the interface provided by a particu-
lar tool. Decision makers, on the other hand, require a
fast, easy-to-use, versatile interface that will allow them
to access information generated by models, as well as fi-
nancial data, in order to assess the set of recommenda-
tions set forth through the modeling activity. The au-
thors are currently working on ISME and some variations
of it.

Another effort is the one at VPI&SU [Balci, et.al.
1990]. They have been working on SMDE, a four layer
simulation support environment that uses the OO
paradigm as required in the Conical methodology [Nance
1987]. Under this framework a variety of tools are inte-
grated to 1) offer cost effective support throughout the
SMP, 2) increase modeler's productivity, and 3) improve
the reliability of the simulation studies.

4. CONCLUSIONS

Simulation modeling is a powerful modeling tech-
nique that requires various kind of knowledge and
tools. Formal simulation modeling methodologies and
efficient and smart tools require merging formalisms
and techniques from Al and databases. Extensive re-
search has been conducted on the marriage of Al and
simulation. The lessons learned lead to the conclusion
that it is necessary to complement the power of both
simulation and Al with databases so as to develop simu-
lation modeling environments that nurture the entire
SMP. Realization of these environments is a function
of merging databases, Al and simulation in such a way
that the overhead of three fields is minimized.
Techniques and tools from Al should 1) guide the
search process of the SMP, and 2) serve as a knowledge
assistant to the modeler. Databases should hold data
from which knowledge is derived by the Al-based tool.
Simulation methods and tools act as the catalyst be-
tween Al and databases in the quest for comprehensive
and smart simulation modeling environments.
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