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ABSTRACT

This paper gives an overview of how simulation modeling
techniques can be employed in the design and analysis of
advanced manufacturing systems. The reasons for the
complexities of these systems, as well as the uses of
simulation software packages, are discussed. Finally,
examples of simulation models of advanced manufacturing
systems, as developed by the authors, are presented.

1 INTRODUCTION

Advanced manufacturing systems (AMSs) are
those which manufacture parts with the material handling
functions, machine operations, and machine tools under
the control of a computer (Herald and Nof, 1978). The
terms advanced manufacturing system, automated
manufacturing system, and computerized manufacturing
system have been used interchangeably in the literature
(Gupta, 1990).

Examples of AMSs include flexible flow systems,
flexible manufacturing systems, and flexible
manufacturing cells. These systems can be composed of
components such as robots, NC machining centers,
automated guided vehicle systems, etc.  The key
characteristics of an AMS however include its flexibility
(i.e., ability to produce a wide variety of parts with low
set up times) and computer control.

The complexities of these systems basically result
from their flexibility. These complexities make AMSs
very difficult to design and operate. For example, Suri
(1985) identified five phases of problems associated with
the design and operation of flexible manufacturing
systems: initial design; detailed design; installation;
production planning, scheduling, and operation; and
ongoing modifications. Each category of problems has its
own particular set of design variables and performance
measures; and, each set of decisions made with respect to
one problem area affects the subsequent problem areas.

Examples of decisions which must be made in the
design and operation of an AMS include the types of parts
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to be produced, the types and numbers of production
machines and material handling equipment to include in
the system, the layout of the system, the numbers of
pallets/fixtures for each part type, the potential routings
for each part type, local and global buffer capacities, lot
sizes, sequencing rules, tool assignments, production
rates, dispatching rules, etc. Some of these decisions
(e.g., system layout) may be made only once every few
years, while others may be made on a daily basis (e.g,.
production schedules).

These decisions must be made while accounting
for a variety of performance measures, including system
cost and flexibility, due-date performance, quality of
parts produced, production rates, inventory levels,
machine utilizations, etc.

Simulation modeling can be a tremendous aid
in the design process for an AMS. The purpose of this
paper is to give the reader a brief overview of how this
can be accomplished. Specifically, in the next section
of the paper, we discuss the complexities associated
with modeling AMSs. In the third section, we give a
brief review of simulation software packages available
for modeling AMSs. The fourth section of the paper
contains a brief discussion of the steps of a simulation
project, while the fifth section contains several examples
of the modeling of AMSs performed by the authors.
Finally, the last section of the paper contains a summary
and conclusions.

2 COMPLEXITIES ASSOCIATED WITH THE
MODELING OF AMSs

In basic terms, advanced manufacturing systems
are complex because

1) A wide variety of parts
produced by an AMS, and

A number of different resources must interact
in a complex fashion in order for the system to
operate efficiently.

The system may be able to produce various part

are typically

2)
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types simultaneously. Because of the typical AMS’s
flexibility, a particular type of part may follow any of
several different routes. In addition to the complex
routing decisions which may have to be modeled,
decisions regarding the sequencing and scheduling of parts
and resources must also be modeled. Again, this process
is made more complex as a result of the variety of part
types that can be produced by the system.

The types of resources associated with an AMS
include pallets, fixtures, tools, robots, machines,
conveyors, automated storage/retrieval systems, AGV’s,
AGV guidepaths, machine operators, maintenance
personnel, inspection and testing equipment, etc. The
simultaneous use of various resource types (e.g., a pallet,
a machine, a conveyor, and a human operator) may have
to be modeled. Hence, resource allocation decisions are
not trivial.

Many researchers have recognized that the
material handling subsystem of AMSs are typically very
difficult to model (Chapter 13 of Law and Kelton, 1991).
Again, this difficulty has to do with the complex
interactions between and among material handling
resources (e.g., AGV’s, AGV guidepaths, conveyors,
robots), production resources (e.g., machine tools), and
parts.

Because of these modeling difficulties, some
simulation languages have included special material
handling modules. These modules can be viewed as
simulators that can be employed within a larger system
model constructed from the language. As an example, the
SIMAN language allows an INTERSECTIONS element,
a LINKS element, and a NETWORKS element, among
other constructs for modeling AGV systems.

3 SIMULATION LANGUAGES AND SOFTWARE
PACKAGES

A large number and wide variety of software
packages are available to aid in the simulation modeling
effort for manufacturing systems. In general, these
packages correspond to either general purpose simulation
languages, such as SLAM II, SIMAN, GPSS, and
SIMSCRIPT 11.5, or simulators such as WITNESS,
ProModel, XCELL +, MAST, SIMFACTORY II.5, and
AutoMod II. For comparisons/descriptions of these and
other packages, see Law and Haider (1989), Chapters 3
and 13 of Law and Kelton (1991), Banks et al. (1991),
and the Directory of Simulation Software (1991) from the
Society for Computer Simulation.  See the recent
Proceedings of this conference for more in-depth
descriptions of some of the packages (e.g., Goble (1991)
for SIMFACTORY 1I1.5, Harrel and Tumay (1991) for
ProModel, etc.).

Banks et al. (1991) define a simulator as "a

parameter-driven  simulation  that requires no
programming.” In general, a simulator can be thought
of as being easier to use than a simulation language, but
not as flexible. In recent years, the gap between
simulators and simulation languages has narrowed. That
is, many simulation language packages have been
developed to the point where modeling constructs,
which are in effect simulators, are included. For
examples, see the material handling constructs of
SIMAN discussed earlier (Chapter 9 of Pegden,
Shannon, and Sadowski (1990)) and of SLAM II
(Chapter 16 of Pritsker (1986)). On the other hand,
simulators such as WITNESS allow programming inserts
to increase the flexibility of their modeling capabilities.

In recent years, more attention has been paid to
the use of simulation in the daily operation of an AMS.
This is manifested, for example, in the development of
the FACTOR/ AIM software package (Krahl, 1991) for
scheduling manufacturing facilities in response to daily
changes on the shop floor. The increased efficiency of
hardware and software has allowed this type of
development.

Another trend in recent years has been the
development of packages to address all aspects of a
simulation modeling project. A good example of this
type of system in SLAMSYSTEM, a PC-based system
which through the use of WINDOWS allows the user to
manage files of various types (i.e., control files,
network files, user insert files, output files) so that
several versions of a model can be easily managed.

There is no one best package. That is different
packages have different advantages/disadvantages when
compared to other packages. For example, Banks
(1991) lists 33 features to consider in determining which
simulation software package to purchase. These features
are categorized into input features, processing features,
output features, environment features, and cost features.
It is important that the buyer/user of the software have
a clear understanding of what the requirements are for
his situation. For examples, the software must be
compatible with the available hardware, and the number
and capabilities of the users of the software must be
considered.

Many firms may find it desirable to purchase
more than one package, for example, both a simulation
language package for modeling very complex situations
and a simulator for modeling less complex situations
more quickly.

4 THE STEPS OF A SIMULATION PROJECT
Several authors have discussed the basic steps

in all simulation studies. For examples, see Chapter 1
of Law and Kelton (1991), Chapter 1 of Pritsker
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(1986), and Chapter 1 of Pegden, Shannon, and Sadowski
(1990).

Law and McComas (1991) note that a simulation
project is actually a sophisticated systems analysis
activity. They describe the basic steps of a simulation
project as follows:

1. Formulation (defining) of the problem and
project planning.

Collection of the data and formulation of a
model.

Validation of the model.

Coding and verification of a computer program.
Execution and analysis of the pilot runs.
Validation.

Design of experiments.

Execution of production runs.

Analysis of output data.

Documentation, presentation, and implementation
of results.
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Law and McComas also note that step 1 is often
shortchanged; that is, "a careful statement of the
problem’s objectives is often neglected, due to a lack of
understanding of the nature of simulation, the information
it can provide, and the time and effort required for a
sound study."

The main point of the Law and McComas article
is that model coding typically represents only a very small
part of a simulation project. Successful completion of
simulation project requires attention to each of the steps
noted above through the use of sound project management
techniques. In the simulation modeling of AMSs, it’s
especially important to obtain a detailed description of the
logic involved in the system operation. This is often
difficult because of the complex nature of this system
operation.

5 EXAMPLES

In this section of the paper, we detail several
examples involving the modeling of an AMS. For these
projects, the SLAM II language (as incorporated within
the SLAMSYSTEM package) was used. The purposes of
these examples are, first, to illustrate some of the
complexities associated with the modeling of AMSs and,
second, to illustrate how to model these complexities with
a specific language/system. The SLAM II language was
used, but these models could have been constructed using
any of several different languages. In fact, alternative
approaches even within the SLAM II language could have
been used.

For other examples of simulation models of
AMSs, see any of several textbooks on simulation

modeling (e.g., Pegden, Shannon, and Sadowski, 1990)
as well as the Proceedings of this conference (e.g.,
Davis, 1986 and Jeyabalan and Otto, 1991).

5.1 Modeling of a Semi-automated Assembly Line

This project involved the modeling and analysis
of a semi-automated assembly line consisting of 29
stations. Because of the proprietary nature of the
project, the specifics of the products produced by the
line, and of the production operations performed, will
not be disclosed here.

The purpose of the project was to develop a
simulation model that would allow for experimentation
with various design scenarios, involving changes to the
current system, with respect to the:

1) number of back-up machines at each station,
2) locations and sizes of external buffers,

3) cycle times at the stations,

4) elimination of machine downtime,

5) velocity of pallets on the conveyor, and

6) number of pallets.

The product came in two different types of
frames; the first frame type had four different types of
models, while the second frame type came in five
different types of models. Hence, nine different types
of assemblies were produced by the system. The cycle
times at the stations did not change from one type of
assembly to another; however, there were set-up times
involved at some stations when production was switched
from one type of assembly to another.

The assemblies moved sequentially from one
station to the next through the use of an accumulating
(queueing) conveyor. Each assembly was contained on
two different types of pallets, labeled A and B, as it
moved through the system.

Most of the stations contained an "internal
buffer” of size 1--i.e., one assembly at a time was
processed at the station. However, a few of the stations
contained an internal buffer with a capacity greater than
one. For example, the sixth station was a washer that
could accommodate 39 assemblies simultaneously.

The SLAMSYSTEM package was used to
model the system. Each run of the model required the
processing of three SLAMSYSTEM files: a control
file, a network file, and a user insert file (consisting of
FORTRAN code). Some 31 different types of resources
were modeled -- one type for each of the 29 stations,
and one type each for type A pallets and type B pallets.

Global variables, of type XX, were used to
represent the type of assembly being produced by the
system, the velocity of pallets on the line, and
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information about the production schedule.  Global
variables, of type ARRAY, were used to represent the
cycle time, the changeover time (from one type of
assembly to another), the external buffer capacity, and the
type of assembly most recently processed for each station.
Global (ARRAY) variables were also used to represent the
distances between each pair of sequential stations or the
conveyor.

5.1.1 Interfacing a Production Schedule With the
Model

The production schedule was represented as a
sequence of assembly types through the use of XX
variables. For example, if the user wanted to process a
run with 500 assemblies of type 1, 400 assemblies of type
4, and 1000 assemblies of type 3, then he would specify
the following initial values for the XX vanables:

XX(7) = 3, indicating 3 entries in the

schedule,
XX(10) = 500,
XX@an =1,
XX (12) = 400,
XX (13) = 4,
XX (14) = 1000,
XX (15) = 3.

The global variable XX(8), initially set at a value of 1,
was used to represent the current entry being processed in
the schedule.

In this model, an entity (assembly kit) is created
every 15 seconds by a CREATE node, but it will only be
routed into the system if the number of assemblies waiting
for pallets is less than 5. XX(9) is used as a counter to
keep track of the number of assembly kits for a particular
type of assembly; for example, when XX(9) attains a
value of 501 for the first entry in the schedule, then
XX(9) will be greater than XX(10) = 500, indicating that
the next assembly to be processed should be the first of
the 400 assemblies of type 4. XX(1) is used to keep track
of the type of assembly currently being processed by the
line; (i.e., XX(1) will assume the sequential values of
1,4, and 3 for this run). XX(8) is used to keep track of
the number of the schedule entry being processed
currently; (i.e., XX(8) will take on the sequence of values
1,2, and 3, for this run).

ATRIB(11), a local variable, is used as an
indicator attribute for an assembly; that is, for all
assemblies processed on the line except for the very last
one (according to the schedule), ATRIB(11) will have a
value of 0. The last assembly to be processed will have
an ATRIB(11) value of 100. This information is used to
stop the simulation run, when this particular entity (with

an ATRIB(11) value of 100), reaches the end of the
line. The model continues to create assembly kits
though, even after this last kit, according to the input
production schedule, has been created. The reason for
this was to keep the station utilization unbiased.

5.1.2 Modeling of Internal Queues

Another relatively difficult aspect involved in
modeling this system had to do with those stations with
an internal buffer greater than one. These stations could
not simply be modeled as queue nodes for the following
reason. First, whether or not an assembly can enter the
last position of the internal queue from the first position
of the external queue depends upon whether there is an
item in the last position of the internal queue. Hence,
just because there is only one item in an internal queue
with a capacity of three items, this does not mean that
an item from the external queue can enter; that one item
in the internal queue must also not be in the last
position of the internal queue.

One possible way to model this situation could
have been through the use of a service time based on a
node release time. (see page 132 of Pritsker (1986)).
To allow more generality, we took a slightly more
complicated approach involving the use of AWAIT
nodes, ENTER nodes, EVENT nodes, GOON nodes,
conditional branching, and ALLOC subroutines.  An
AWAIT node is used to represent the external queue,
and an ALLOC subroutine (a user-written FORTRAN
subroutine) is called whenever an assembly arrives to
the external queue, in order to check whether the
assembly can enter the internal queue (according to the
conditions discussed above).

Another user-written FORTRAN subroutine is
called through the use of an EVENT node, and is
executed immediately after an assembly exits the last
position of an internal buffer. The code checks to see
whether there are any assemblies waiting to enter the
internal buffer from the external buffer. If so, the
entity representing the assembly is removed from the
file representing the external buffer and placed into the
portion of the model representing the internal buffer
through the use of an ENTER node.

Conditional branching from GOON nodes is
used to check whether or not an item just finished with
its operation in one position of the internal queue can
advance to the next position. The "checking” is done at
one second simulated time intervals; although this does
not provide an exact representation of the programmable
logic controller actually used in the system, it is close
enough for modeling purposes.
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5.1.3 Modeling the Blocking Aspects of the System

The assembly line was set up in such a way that
whenever a station’s external queue was full, the
preceding station was blocked from sending an assembly
to that next station. In effect, the preceding station was
stopped from doing more work. This happened more
often than one might expect, due to machine breakdowns
and the varying cycle times at the various stations.

Often the easiest way of handling this situation in
SLAM 1I is to use the blocking mechanism associated
with QUEUE nodes. However, since we used
RESOURCES and AWAIT nodes to model the stations,
we employed a different approach involving the use of the
STOPA activity duration.

As mentioned above, an AWAIT node is used to
model the external buffer for a station. An EVENT node,
which accesses a user-written FORTRAN subroutine, is
used to set a value for ATRIB(10), a local variable. This
ATRIB(10) value is used to represent the processing time
at a station for an assembly, including the changeover
time if the assembly being processed is a new one in the
sequence, according to the production schedule.

Another EVENT node is used to check whether
or not the external buffer for the next station is at
capacity. If so, ATRIB(9), an indicator attribute for the
entity, is set to a value of 1, and the assembly is sent
along an activity with an "indefinite duration” of STOPA
(ATRIB(3)), prior to releasing the resource corresponding
to the current station. If the external buffer for the next
station is not full, then ATRIB(9) for the entity is set to
0, the resource corresponding to the current station is
released, and the entity is sent along an activity which
represents the section of the conveyor connecting the
current station to the next station. In addition, through
the use of another EVENT node, any assemblies blocked
at the previous station can be "unblocked”, and therefore
travel to the current station.

A variety of experiments were run with the
model of the assembly line, including those related to
varying the number of pallets in the system, varying the
numbers of backup machines, varying the cycle times at
the stations, etc. The plant engineers were intimately
involved in the experimentation process, and hence had
greater confidence in the model output.

5.2 Modeling a Semi-Automated Test/Repair Line

The completed assembly produced in the AMS
described in section 5.1 then entered a test and repair line
where it was tested at each of four stations and, if defects
were found, repaired at yet a fifth station. The physical
system and process flow presented a far less complex
situation than did the assembly line, so that the test and

repair line was entirely modeled using the network
features of SLAM-II. The advantage of the network
modeling approach was that the network flow almost
exactly mimicked the digital control logic of the system.

In numerous instances in the test repair model,
the simulation model behaved exactly like the
programmable logical controller (PLC) which monitored
and controlled that segment of the system. For
example, an entity arriving at a GOON node represented
a pallet arriving at a processing station and tripping a
switch. The PLC logic was as follows:

1. If the processing station (an AWAIT node
representing that resource) was open (FREE), the test
pallet (entity) containing the assembly was placed in the
processing station and the operation (service activity)
commenced;

1. If the processing station was busy, an activity was
initiated which rerouted control back to the GOON node
with a delay of 1 second, just as the PLC would do.
This "logic loop" was repeated every 1 second until the
processing station (AWAIT node) was available
(FREE).

The ultimate advantage of the test/repair line
simulation model was that the manufacturing engineer in
charge of the line could evaluate changes in equipment
layout as well as PLC control logic in a matter of
minutes. For example, a change in logic sequence was
as simple as inverting two statements in the SLAM-II
network model, while relocating the repair station away
from the other test equipment involved nothing more
than changing the destination (LABEL) of an entity in
an ACTIVITY statement. Adding a new machine to the
line was somewhat more involved, and required as much
as 10 minutes to effect the required alteration to the
SLAM-II simulation model.

6 SUMMARY AND CONCLUSIONS

Needless to say, having a valid simulation
model available gave the manufacturing engineer in the
above examples much greater confidence in making
alterations in the existing production system. For just
a few thousand dollars, the manufacturing engineer was
able to purchase a PC version of SLAMSYSTEM,
engage consultants to show him how to model the
production system for which he was responsible, and
evaluate investments in new production equipment
costing in excess of $1 million. He was then able to
show his plant manager just how to achieve the
corporate production goals for a new product line.

The key to this manufacturing engineer’s
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success was that, through simulation, he was able to
develop very detailed and accurate models of the AMS.
He saw the need to have a tool that allowed him to
evaluate changes in material flow, equipment placement,
operating policies, and PLC logic before experimenting
with those changes in the actual system. The fact that the
model predicted the effect of proposed line changes within
2 percent gave him the confidence to employ simulation
for more involved and expensive alterations in production
system design.
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