Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

OBJECT-ORIENTED MODELING AND SIMULATION WITH C++

Jeffrey A. Joines
Kenneth A. Powell, Jr.
Stephen D. Roberts

Department of Industrial Engineering
Box 7906
North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

This tutorial shows how to build and simulate object-
oriented models in C++. An object-oriented network
based simulation language called YANSL, which is
fully compatible with C++, is introduced and is used to
create a network queuing model of the TV inspect and
repair problem. YANSL has the "look and feel" of ex-
isting network simulation languages, but possesses the
benefits of an object-oriented design including the use of
classes, inheritance, encapsulation, polymorphism, run-
time binding, and parameterized typing. These con-
cepts are used to implement several seemingly difficult
embellishments to the example in such a way as to ex-
tend the language. Object-oriented simulations provide
full accessibility to the language, faster simulations,
portable models and executables, a multi-vendor im-
plementation language, and a growing variety of com-
plementary tools.

1 INTRODUCTION

The concept of an "object-oriented" simulation has great
appeal because it is very easy to view the real world as
being composed of objects. Consider a manufacturing
cell. Objects that come to mind include the machines,
the workers, the parts, the tools, and the conveyors.
Also, the part routings, the schedule, the work plan, and
other information items could be viewed as objects. In
fact it is quite easy to describe existing simulation lan-
guages using object terminology.

A simulation language or simulation package pro-
vides a user with a set of pre-defined object classes from
which the simulation modeler can create needed objects.
For example, a network-based queuing language will
typically view a system as having entities that travel
through a network of queues, being served by resources.
Using the language (object classes), the modeler would

145

declare the network by defining the node objects and
their connecting branch objects. The node objects
would be described as queues and activities, with and
without resources, and sinks (where entities leave the
network). Pre-defined entity objects, sometimes called
transactions, can be made to arrive to the network
through source nodes. Most languages permit attributes
that can be altered to be attached to the transactions.
Resource objects and their behavior would need to be
defined. Support objects include the distributions, the
global attributes, statistical tables and histograms. The
modeler selects objects and specifies their behavior
through the parameters available. The integration of all
the objects into a single package provides an overall
simulation model.

Some simulation packages provide for special func-
tionality, such as that needed for manufacturing simu-
lations. Object classes may be defined for machines,
conveyors, transporters, cranes, robots, and so forth.
These special objects have direct usefulness in particular
situations. Simulation packages centered around such
objects are directed at specific application areas such as
AGVs, robotics, FMS, etc.

1.1 The Problem

Most simulation languages suffer from two important
weaknesses. Because the languages offer pre-specified
functionality produced in another language (assembly
language, C, FORTRAN, etc.), the user cannot access
the internal function of the language. Instead, a user
must rely on vendor description of the algorithms, pro-
cedures, and data used to implement the concepts. Only
the vendor can make modifications to the internal func-
tionality. Second, users have limited opportunity to ex-
tend an existing language feature. Some simulation
languages allow for certain programming-like expres-
sions or statements, which are inherently limited. Most

146 Joines, Powell, and Roberts

languages allow the insertion of procedural routines
written in other general-purpose programming lan-
guages. However none of this is fully satisfactory be-
cause, at best, they provide only procedural extension.
For example, it might be easy to write a procedure to
make a complicated computation of an activity time, but
if you wanted to create a different activity, there is in-
sufficient access to existing activity information. Any
procedure written cannot use and change the behavior
of a pre-existing object class and any new object classes
defined by a user in general programming language
does not coexist directly with vendor code. At a more
fundamental level, the language structure may be inher-
ently awkward for some purposes. For instance, con-
sider the difficulties of modeling a tennis match using a
queuing network language.

1.2 A Solution

Object-oriented simulation deals directly with the limi-
tation of extensibility. The principle reason for the de-
velopment of object-oriented concepts is to permit data
abstraction as well as procedural abstraction. Data ab-
straction means that new data types with their own be-
havior can be added arbitrarily to the programming lan-
guage. When the new data type is added, it can assume
just as important role as implicit data types. For exam-
ple, a user-defined data type that manages complex
numbers can be as fundamental to a language ("first
class") as the implicitly defined integer data type. In the
simulation language context, a new user-defined robot
class can be added to a language that contains standard
resources without compromising any aspect of the exist-
ing simulation language.

1.3 Purpose of this Paper

The purpose of this paper is to illustrate object-oriented
simulation using the C++ language. C++ is an object-
oriented extension to the C programming language
(Lippman 1991). We will use C++ to illustrate the
"extensive/intensive" nature of object-oriented simula-
tion (OOS) within the framework of the popular net-
work-based simulation approach. Through common
simulation examples, the utility of classes, encapsula-
tion, inheritance, overloading, run-time binding, and
parameterized typing are demonstrated. OOS is shown
to support extension in a fashion that grants each user
vendor access to changing internal function and adding
new objects.

2 YET ANOTHER NETWORK SIMULATION
LANGUAGE (YANSL)

In order to illustrate the importance of object-oriented
simulation, we begin by describing a network queuing
simulation language of roughly the power of a GPSS
(Schriber 1991), SLAM (Pritsker 1986), SIMAN
(Pegden, Shannon, and Sadowski 1990), or INSIGHT
(Roberts 1983), but without some of the "bells and
whistles." Users familiar with any of these language
should recognize, however, that what we present is a
very powerful alternative. For convenience, we call this
language YANSL.

2.1 Basic Concepts and Objects in YANSL

When modeling with YANSL, the modeler views the
model as a network of elemental queuing processes
(graphical symbols could be used). Building the simu-
lation model requires the modeler to select from the pre-
defined set of node types and integrate these into a net-
work. The network is constructed about a set of enti-
ties which are called transactions that flow through the
network. The transaction has exactly the same interpre-
tation it has in the other simulation languages. The
transactions are routed through the network according
to some logic that represents the system being modeled.
Transactions may require resources to serve them at ac-
tivities and thus may need to queue to await resource
availability. Resources may be fixed or mobile in
YANSL, and one or more resources may be required at
an activity. Unlike some network languages, resources
are active entities, like transactions, and may be used to
model a wide variety of real-world items (notice this
feature is, in fact, more powerful than existing lan-
guages). Although you may regard YANSL as being
pale in comparison with existing simulation languages,
we will demonstrate how easily a user can extend its
power and functionality.

2.2 The TV Inspection and Repair Problem

As a portion of their production process, TV sets are
sent to a final inspection station. Some TVs fail in-
spection and are sent for repair. After repair, the TVs
are returned for re-inspection. Just as in other network
languages, transactions are used to represent the TVs.
The resources needed are the inspector and the repair-
man. The network is composed of a source node which
describes how the TVs arrive, a queue for possible wait
at the inspect activity, the inspect activity and its re-
quirement for the inspector, a sink where good TVs
leave, a queue for possible wait at the repair activity,
and the repair activity. Transactions branch from the
source to the inspect queue, are served at the inspect
activity, branch to either the sink or to the repair queue,
are served at the repair activity and return to the inspect

Object-Oriented Simulation with C++ 147

queue. The data used in the simulation is that the inter-
arrival time of TVs is exponentially distributed with a
mean interarrival time of 5.0 minutes, the service time
is exponentially distributed with a mean of 3.5 minutes,
the probability a TV is good after being inspected is .85,
and a repair time that is exponentially distributed with a
mean of 8.0 minutes.

2.3 The YANSL Model

The YANSL network has all the graphical and intuitive
appeal of any network based simulation language. A
graphical user interface could be built to provide
"convenient" modeling with error checking and help of-
fered to the user. Whatever the modeling system used,
the ultimate computer readable representation of the
model would appear as follows:

#include "simulation.h"

main()

{

// SIMULATION INFORMATION

Simulation tvSimulation(1);
// One replication

// DISTRIBUTIONS

Exponential interarrival(5),
inspectTime(3.5),
repairTime(8.0);

// RESOURCES
Resource< PRIORITY > inspector, repairman;

// NETWORK NODES

/** Transactions Arrive **/
Source< Transaction, DET >
tvSource(interarrival, 0.0, 480);
// Begin at 0.0 and quit at 480.0

/** Inspection **/
Queue< FIFO > inspectQueue;
inspector.addQueue(inspectQueue);
Activity< PROBABILTIY >
inspection(inspectTime);
inspection.addRequirement(inspector);
inspectQueue.addActivity(inspection);

/** Repair **/

Queue< FIFO > repairQueue;
Repairman.addQueue(repairQueue);
Activity< DET > repair(repairTime);
repair.addRequirement(repair);
repairQueue.addActivity(repair);

/** Transactions Leave **/
Sink finish;

//NETWORK BRANCHES
tvSource.addBranch(inspectQueue);
inspect.addBranch(finish, .85);
// 85% are good and leave
inspect.addBranch{ repairQueue, .15);
// 15% need repair
repair.addBranch(inspectQueue):

//RUN the Simulation
tvSimulation.run();

}

The previous model has all properties of any network
simulation language. There is an almost one-to-one
correspondence to the entities describing the problem.
No more information is needed than necessary. The
statements are highly readable and follow a simple for-
mat. The pre-defined object classes grant the user wide
flexibility.

The statements in YANSL are very similar to those
in SIMAN, SLAM, or INSIGHT. By the way, this is all
legitimate C++ code -- which we will discuss in detail
later. Also this model runs in half the time a SIMAN
model runs on the same machine! But the real advan-
tage of YANSL is its extensibility.

2.4 The Objects and their Specification

Lets take a closer look at the YANSL "statements." The
model is enclosed in a recognizable C framework,
namely having a #include statement that includes all
the simulation requires, a main () function header, and
{)} which enclose the block of code (YANSL state-
ments). This framework is left only to reveal it is C++
code, as even these could be eliminated by the C pre-
processor commands that would take a Begin and End
and StartSimulation for the conventional C to-
kens.

The YANSL simulation consists basically of two
types of statements. The first is the declaration of ob-
jects in the model and the second is function calls to
structure the model. The same division of statements
occurs in existing simulation languages. The only order
requirement for statements is that an object must be de-
clared before it is used. Thus we decided to order the
statements by declaring first the general information
needed (like the distributions) and then we specified the
network entities (resources, nodes, and branches).

2.4.1 Object Declarations

The objects in YANSL are declared in a form consistent
with C and C++ . The object class is specified first,
then the objects are named. Initialization of specific
objects are done in parentheses. For instance,

Exponential interarrival(5),

inspectTime(3.5),
repairTime(8.0);

creates three exponential distributions whose names are
interarrival, inspectTime, and repairTime

148 Joines, Powell, and Roberts

and whose initialization parameters are given in paren-
thesis. It is important to note that the mean interarrival
time is specified as an integer 5, but in fact it is assumed
to be a floating point 5.0. This illustrates a simple case
of "overloading." Here, initialization of the interarrival
object can take either an integer or a floating point pa-
rameter. In object-oriented terminology, exponential
objects are initialized by either an integer or floating
point object.

Some object declarations appear more complex be-
cause the object class is also parameterized by informa-
tion in <>. In object-oriented terminology, these are
called "parameterized types." A parameterized type is
used when the object class needs some information.
This should not be confused with initialization of ob-
jects where the object needs some information. As an
example, consider

Activity< PROBABILITY > inspect(inspectTime);

where the Activity class needs some branching
method class called PROBABILITY, while the object
inspect is initialized with a reference to the in-
spectTime object. Notice that a class will be
parameterized with another class, while an object is
parameterized with another object.

Because YANSL is really C++, all the "built-in"
classes from C++ are directly available to the YANSL
user. These include integer, float, char, etc.
Further, in an effort to give our YANSL users a full
range of "nice" basic classes, such classes as string
and dynamic array with range checking are also
available. Because an object-oriented language doesn't
distinguish any differently between the C++ classes and
the ones we have added, use of all these classes is very
similar. In the computer literature, this property of
having user objects treated like built-in objects means
everything is treated as a "first class" object.

2.4.2 Using the Objects

The other "statements” in YANSL provide direct use of
the objects. These are actual function calls in C++. In
object-oriented terminology, it is called "message pass-
ing." For example,

inspector.addQueue(inspectQueue });

the message addQueue with inspectQueue object
as a parameter is sent to the inspector object. In
C++ terminology the addQueue function in the
inspector object is passed the inspectQueue
object. The purpose of this message/function is for the

inspector to know that it is to service the queue of the
inspection activity when it is free to choose what to do.

Notice the "encapsulation" of functionality. The re-
source class obviously has the ability to accept informa-
tion about what a resource is to do when it is available.
All this is contained in the resource class. Suppose you
want some different functionality of resource behavior.
Now all the changes would be confined to the code in
the resource class.

The YANSL functions are used to specify the func-
tioning of the objects in the simulation. The add-
Queue specifies what queues the resources serve, the
addBranch specifies how transactions branch from
the departure nodes, the addActivity associates the
activity with the queue, and the addRequirement
specifies the resource requirements at the activities. Fi-
nally, the tvSimulation. run causes the simulation
execution to begin.

2.5 Running the Simulation

The prior model is compiled under a C++ compiler(a
compiler should be AT&T version 3.0 compatible),
linked with the YANSL simulation library, and exe-
cuted. Currently, the YANSL simulation library has
been compiled under Borland C++ 3.1 (Borland 1992)
and GNU C++ (GNU 1991). C++ is strongly typed, so
error checking is very good. Also, if an environment
such as Borland is used, the language can be used under
Windows or DOS and take advantage of all the Borland
tools such as the object browser and interactive debug-
ger.

Also, the simulation is easily linked into other C++
libraries which may be used for graphics and statistical
analysis. In a sense, YANSL has the same relationship
to C++ that GASP IV (Pritsker 1974) has to FOR-
TRAN. The major difference is that whereas GASP was
a set of FORTRAN functions that the model builder
called, YANSL is a set of both the functions and their
data organized about simulation objects (rather than
simulation functions). As such, YANSL is more like
SLAM, but fully compatible with the entire C++ lan-
guage, rather than simply permitting general procedures
to be "inserted" into a specific simulation structure like
SLAM.

3 CLASSES AND THEIR USE

The class concept is fundamental to object-oriented
software. The classes provide a "pattern" for creating
objects. An example from YANSL is the Exponential
class:

Object-Oriented Simulation with C++

#ifndef EXPON_H
#define EXPON_H

#include "random.h"

/* expon.h contains Class Exponential. This
class describes inverse transformation
generator for Exponential variables. */

class Exponential: public Random

{

public:
Exponential (double, unsigned int=0, long=0);
Exponential (int, unsigned int=0, long=0);
virtual double sample();

void setMu(double initMu) {mu = initMu;)
double getMu() {return mu;)
private:

double mu;

)i

#endif

The class definition determines the properties of an ob-
ject.

3.1 Class Properties

Properties of classes, namely their data objects and
functions, are generally grouped into "public" and
"private" sections (C++ also permits another grouping
called protected). The public properties can be accessed
from outside the object. The private properties are in-
formation kept strictly locked within an object and are
available only to object functions. For example, the
double object mu is private and cannot be directly ob-
tained. However, a public function called getMu does
return the value of mu. Making a property private re-
stricts unauthorized use and encapsulates the object.

3.2 Inheritance

The Exponential class was not defined "from scratch.”
For instance, it doesn't say anything about its use of
random numbers or from where the random numbers
come. Because the random number generator estab-
lishes the source of randomness for all random proc-
esses, it is defined in its own class. Hence, the Expo-
nential class is derived from the Random class so the
Exponential class has access to all the public properties
of the Random class without having to re-code them.
This use of prior classes is called "inheritance." In fact,
this inheritance makes the Exponential class a "kind of"
Random class. In object-oriented terminology this is a
"is-a" relationship.

The other major kind of relationships between two
classes is the "has-a." In the case of the Exponential,
the Exponential has a double object called mu. A has-a
relationship is not the result of inheritance.

149

3.3 Run-time Binding

The sample () function is specified as a virtual func-
tion in Exponential because we don't want to write a
specific function for each class that obtains a sample
from the variate generator. Therefore, the sample func-
tion will, at run-time, decide from which random vari-
ate to sample. This binding the variate to the sample at
run-time is also called "delayed" or "run-time" binding.
Run-time binding may extract a small run-time penalty,
but makes this entire specification of sampling from
variates much easier to write, maintain, and use.

3.4 Construction and Initialization of Objects

When an object from a class is needed, there needs to be
a way to construct and initialize it. The function that
does this is called a "constructor" and C++ will provide
one if it isn't included in the class definition. In the
case of the Exponential class, there are two constructors.
One takes a double and the other takes an integer. No-
tice that some of the arguments have specified defaults,
so the user doesn't have to specify all the potential fea-
tures of an Exponential object (these additional argu-
ments pertain to the control of the random number
stream). Within the constructors (details not shown),
space is allocated for the object and parameters are as-
signed.

Although, not used in Exponential, C++ permits user
specified destructors. A destructor will clean-up any
object responsibilities (like collecting statistics) and
deallocate the space.

3.5 Polymorphism

The Exponential class has two constructors so users
may specify either floating point or integer arguments
for the mean interarrival time. Although it is not neces-
sary in this case (C++ will make the right conversions),
it does illustrate the use of polymorphism. Thus, the
Exponential object is appropriately specified, regardless
of whether an integer or double is given. This encapsu-
lation of the data makes the addition of new types for
parameters very easy and localized.

4 EMBELLISHMENTS TO THE TV MODEL

To illustrate the broader use of an object-oriented
simulation language, we present several embellishments
to the TV inspect and repair problem. Although these
embellishments may appear very complicated, they are
handled easily and provide direct extensions to YANSL.

150 Joines, Powell, and Roberts

4.1 Add a "floating" Resource

YANSL is capable of modeling "floating" resources
which can service more than one queue. Suppose we
add a third worker who can inspect but will help repair
when there is nothing to inspect. The following addi-
tions are made to the model, which add the worker,
specifies the worker decision process when the worker
finishes a job, and specifies the selection among alterna-
tive resources at the activity nodes:

//Add the new Resource, specify served queues

Resource< PRIORITY > inspectRepairman;
inspectRepairman.addQueue(inspectQueue);
inspectRepairman.addQueue (repairQueue);

//Add the Resource Selectors for activities

ResourceSelection< ORDER > inspectlist;
inspectList.addResource(inspector);
inspectList.addResource(inspectRepairman);

ResourceSelection< ORDER > repairlist;
repairList.addResource(repairman);
repairList.addResource(inspectRepairman):

//Add at the Inspect Activity
inspection.addRequirement(inspectList);

//Add at the Repair Activity
repair.addRequirement(repairList);

A new resource called inspectRepairman is now
declared and the addQueue function states that this
person will serve, in PRIORITY order, the
inspectQueue and repairQueue. Since both the
inspection and the repair activities now have a choice of
resources, two resource selector objects called the
inspectList and the repairList are created
which will be used to specify how the resource is chosen
from the alternatives. In this case, the resource is se-
lected on the basis of ORDER. Finally, at the two ac-
tivities, the addRequirement function specifies the
resource selector object rather than the resource object.
This overloading of the addRequirement function
argument is an example of polymorphism applied to
user-defined classes. Therefore, a user of YANSL now
may specify a requirement involving several resource al-
ternatives with the exact same form used to specify a
single resource and new decision rules may be easily
included.

4.2 Derive a New Type of Transaction for TVs

So far we have used the YANSL transaction class to
represent TVs, but now we would like some way to dis-
tinguish the TVs that are newly arrived from those that
have been inspected to those that have been repaired. In
a network simulation language, this distinction would

be obtained by assigning attributes to the transaction.
The same can be done by extending YANSL as follows:

#ifndef TVTRANS H
#define TVTRANS_H

#include "transact.h"

class TV : public Transaction
{
public:
TV(){ numRepairs = 0; }
void setColor(int cr) { color = cr; }
void incrementRepairs(){ numRepairs++; }
int getNumRepairs(){ return numRepairs; }

int compare(void *);

private:
int numRepairs;
int color;

)i

fendif

First, we derive a new type of transaction called a TV
and give the TV two private properties corresponding to
the number of repairs and the color of the TV. The
public functions set the value of color, increment re-
pairs, and get the value of the private data containing
the number of repairs.

Although this is a simple change, the TV could be
given more complex properties, such as some kind of
repair order object (a has-a relationship). The TV is a
derived class from Transaction (an is-a relationship).
Because a TV is a kind of transaction, all the things
transactions can do TVs can do. Thus, there is no need
to write any special code or do anything special for TVs
as they inherit all the functionality of the transactions.

4.2.1 Add Assignment Node

Now that there is a property of TVs for repairs, there
needs to be some kind of assignment node that can
cause the property to be changed. We need to add a
node to YANSL. In YANSL, node classes are formed
in a class "hierarchy." This hierarchy starts with a
broad division of nodes and specifies more specific
nodes lower in the hierarchy. Nodes lower in the hier-
archy inherit the properties of the nodes above them. A
portion of that hierarchy is given below:

Destination

Departure<BM>

In the hierarchy, nodes are broadly defined as departure
and destination nodes. Departure nodes have branches

o
i

Queue<RankM>

Source<Tran,BM>

Object-Oriented Simulation with C++ 151

connected to them and therefore need a
"BranchingMethod (BM)." Sink, queue, and activity
nodes can have transactions branched to them and are
therefore destination nodes. An assign node is both a
departure and a destination node, so it inherits from
both the departure and destination node classes. This
inheritance from multiple parents is called "multiple in-
heritance." Not all object-oriented languages permit
multiple inheritance like C++. Portions of the new as-
signment node class are given below:

#include "node.h"

template< class BM >
class Assign : virtual public Destination,
virtual public Departure< BM >
{
public:
virtual BOOL executeEntering(
Transaction* tptr)
{
((TV*) (tptr))->incrementRepairs();
branch.nextNode()->executeEntering(tptr);
return TRUE;
}
virtual void executeleaving(
Transaction* tptr)({)
}:

Multiple inheritance is specified in the header of the
class definition. The executeEntering and
executeLeaving are virtual functions in departure
and destination classes that act as placeholders, permit-
ting the assignment node special functionality as trans-
actions enter and leave (remember that TVs are simply
a kind of transaction and thus they can use the assign-
ment node). In this case the assignment node simply
increments the number of repairs.

4.2.2 Add Ranking Method to the Queue

Now that TV objects remember their repairs, let us
show how to extend the Queue node so it handles rank-
ing of TVs according to the number of times they have
been repaired. Recall from the original model that
queue nodes are parameterized by a RankingMethod.
So far all we have specified is the FIFO class. Because
of our foresight in having a "parameterized" queue
class, we can easily add a new ranking method. Rank-
ing methods are encapsulated as classes so they can be
easily modified. Again, a new class is needed:

class SORT : virtual public RankingMethod

(

public:
virtual void addtoQueue(Transaction *tptr);
virtual Transaction* removeFromQueue ();
virtual int rankInQueue(Transaction *tptr);

)i

The virtual functions in this class must be completed to
perform the sort. Now the queue at the inspection activ-
ity would be specified by:

Queue< SORT > inspectQueue;

Parameterized types create templates for classes so that
the ultimate specification of a class is not known until
that class is declared to create the object. Templates
make it easy for a user to specify a kind of class rather
than having a whole bunch of classes whose similarities
are greater than their differences. Some network simu-
lation languages approach this issue by having more
general node types, like an "operation" node, but these
general types cannot, in general, yield specific objects --
only their subtypes create objects (in C++, such a class
would be "pure virtual class").

4.2.3 Change Inspection Time to Depend on Repairs

Another interesting change in the basic model is to
make the inspection time depend upon whether it had
been repaired or not. We add a new kind of activity:

template< class BM >
class InspActivity : public virtual
Activity< BM >
{
public:
InspActivity(Random*, Random *);
virtual BOOL
executeEntering(Transaction *);

protected:
Random *repairVariate;

)i

template< class BM>
InspActivity< BM >::InspActivity(Random
*actTime ,Random *repTime)
: Activity< BM >(actTime)
{
repairvVariate = repairTime;

}

template< class BM >
BOOL InspActivity<BM>::executeEntering(
Transaction *tptr)

{

//... same as activity class

/* If the TV has been repaired Inspection
time is different */

(' ((TV*)tptr)->getNumRepairs()) ?
scheduleEvent(tptr,
actVariate->sample())
scheduleEvent(tptr,
repairVariate->sample()),

return TRUE;

152 Joines, Powell, and Roberts

This new kind of activity, called the InspActivity,
uses all the properties of the activity, but provides a dif-
ferent activity time if the TV has been repaired. Notice
that only a placeholder for the new time variate is
needed, along with a definition of the
executeEntering function.

4.3 Add "grouped" Transactions

Suppose that good TVs are accumulated on a conveyor
in front of a palletizer where eight are gathered into a
group and palletized. Now a single pallet leaves the
palletizing activity rather than eight TVs. This problem
requires that we specifically accumulate and then com-
bine eight TVs into a single object. Also the activity
should not process eight objects but only one, and only
one object should leave the palletizer. A new kind of
node for grouping and managing transactions might be
defined as:

template< class T, class BM >
class Group : virtual public Destination,
virtual public Departure< BM >
(
public:
Group(int max)
{ current = 0; target = max;)}
virtual BOOL executeEntering(
Transaction* tptr)
{
if(++current == target)
{
T* tnew = new T;
branch.nextNode () ->executeEntering(
tnew);
current = 0;
}
delete tptr;
return TRUE;
}
virtual void executeLeaving(
Transaction* tptr){}

private:
int target;
int current;

)i

C++ provides a simple means to create and destroy ob-
jects through its new and delete memory manage-
ment operators. These operators can be overloaded to
apply to specific objects, if needed.

4.4 Related Embellishments

Many more embellishments are simply parallel applica-
tion of the approaches used in the prior sections. For
example, a new branching method or a new resource
selection method or a new decision method can be
added just as we added the ranking method. Various
methods for processing network objects is common in

most network simulation languages, but adding new
methods can be a difficult chore since most of the
internal functioning of the language is unavailable to
the user. Notice that new kinds of transactions,
different types of resources, and new nodes are simply
added. These embellishments can be added for a single
use or they can be made a permanent part of YANSL,
say YANSL II. In fact a different kind of simulation
language, say for modeling and simulating AGV
systems might be created and called YANSL-AGV for
those special users. Perhaps the AGV users would get
together and share extensions and create a more general
YANSL-AGV II. And so it goes! For those of you
familiar with some existing network simulation
language, consider the difficulty of doing the same.

S CONCLUSIONS

Modeling and simulation in an object-oriented language
like C++ possesses many advantages. We have shown
how internal functionality of a language now becomes
available to a user (at the discretion of the class de-
signer). Such access means that existing behavior can
be altered and new objects with new behavior intro-
duced. The object-oriented approach provides a consis-
tent means of handling these problems.

The user of a simulation in C++ is granted lots of
speed in compilation and execution. The C language
has been a language of choice by many computer users
and now C++ is beginning to supplant it. Many ven-
dors are offering compilers, using the latest compiler
technology to produce optimized code for many ma-
chines. Your C++ code is portable. We have run
YANSL on personal computers under DOS and Win-
dows using the Borland compiler and on workstations
using GNU G++. With the new C++ standard (Ellis
and Stroustrup 1991), all C++ compilers are expected to
accept the same C++ language. Executables are stand-
alone and portable. We can build an executable simu-
lation on one machine and run it on another, only as
long as the operating systems are compatible -- you
don't need a C++ compiler on both machines. Most
simulation languages require some proprietary executive
to run.

By having many vendors, the price of C++ compilers
is low, while the environments are first class. For ex-
ample, the Borland package includes a optimizing
compiler, a fully interactive debugger, an object
browser, a profiler, and an integrated environment that
allows you to navigate between a code editor and the
other facilities. At this writing, more CASE (Computer
Aided Software Engineering) tools are appearing to
make development more organized and orderly. Also
numerous class libraries for windowing, graphics, and

Object-Oriented Simulation with C++ 153

so forth are appearing that are fully compatible with
C++. It is easy to see graphical user interfaces for
simulation modeling, animation of simulation, and sta-
tistical analysis of simulation results completely cap-
tured by several vendors. Their interoperability would
be insured by their use of a common means for defining
and using objects.

It is true that to take full advantage of object-oriented
simulation will require more skill from the user. But
that same skill would be required of any powerful
simulation modeling package, but with greater limita-
tions.

REFERENCES

Borland C++ Version 3.1. 1992. Borland International,
Inc. 1800 Green Hills Road, Scotts Valley, CA
95067-001.

Ellis, M, and B Stroustrup. 1991. The Annotated C++
Reference Manual. Reading, Massachusetts:
Addison-Wesley.

Goldberg, A., and D. Robson. 1989. Smalltalk-80: the
language. Reading, Massachusetts: Addison-Wesley.

GNU C++ Version 2. 1991. Free Software Foundation,
Inc.., 675 Mass Ave, Cambridge, MA 02139.

Lippman, S.B. 1991. C++ primer, Second Edition.
Reading, Massachusetts: Addison-Wesley.

Pegden, C.D., R.E. Shannon, and R.P. Sadowski. 1990.
Introduction to simulation using SIMAN. New York:
McGraw-Hill.

Pritsker, A.AB. 1974. The GASP IV simulation
language. New York: John Wiley and Sons.

Pritsker, A.A.B. 1986. Introduction to simulation and
SLAM II, Third Edition. New York: Halsted Press.

Roberts, S. 1983. Modeling and Simulation with
INSIGHT. Indianapolis, Indiana: Regenstrief
Institute.

Schriber, T.J. 1991. An introduction to simulation
using GPSS/H. New York: John Wiley and Sons.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is currently pursuing a Ph.D in
the Department of Industrial Engineering at North
Carolina State University. He received his B.S.LE,
B.S.E.E, and M.S.LLE from NCSU. He is a member of
Phi Kappa Phi, Alpha Pi Mu, Tau Beta Pi, Eta Kappa
Nu, IIE, and IEEE. His interests include object-oriented
simulation, artificial neural networks, and real time
control.

KENNETH A. POWELL, JR. is currently finishing a
M.S.LE in the Department of Industrial Engineering at
North Carolina State University. He received his
B.SIE in December 1990 from NCSU. He is a
member of Alpha Pi Mu and IIE. His interests include
simulation, object-oriented programming, and ex-
perimental design.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at North Carolina
State University. He received his B.S.ILE.,, M.SIE,,
and Ph.D. from Purdue University. He is the Modeling
Area Editor for TOMACS and an Associate Editor for
Management Science. He has served as Proceedings
Editor and Program Chair for the Winter Simulation
Conference. He is the TIMS/CS representative to and
current Chair of the Board of Directors of WSC.

