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ABSTRACT

Autocorrelated processes occur naturally in many
domains. Typical examples include autocorrelated
(bursty) job arrivals to a manufacturing shop or
telecommunications network.

This paper presents a novel approach to input
analysis of autocorrelated processes, called the TES
( Transform-Ezpand-Sample) modeling methodology.
TES is a versatile class of stochastic processes which
can simultaneously capture both the marginal distri-
bution and autocorrelation structure of a stationary
(empirical) time series. In this paper we summarize
the TES modeling methodology and briefly review
a software environment, called TEStool, which' sup-
ports this methodology through an interactive graph-
ical user interface (GUI). The GUI greatly facilitates
the process of fitting a TES model to empirical time
series, by providing iinmediate feedback to modeling
actions. We conclude the paper with a number of
cxamples which demonstrate the efficacy of the TES
methodology and the TEStool GUI by fitting TES
models to empirical datasets obtained from actual
field measurements.

1 INTRODUCTION

Autocorrelated processes occur naturally in many
domains. For instance, the simulation practitioner
might encounter autocorrelated job arrivals to a
manufacturing shop or VBR (variable bitrate) com-
pressed video in a telecominunications network (Lee
et al. 1991, Melamed et al. 1992). This paper is con-
cerned with the modeling and analysis of such auto-
correlated processes.

A number of recent studies (Fendick et al. 1989,
Heffes and Lucantoni 1986, Livny et al. 1993, and
Patuwo et al. 1993) have shown that if autocorrelated
customer interarrival times drive a queuing system,
the resulting performance measures are much worse
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than those corresponding to renewal traffic (which
ignores autocorrelations in interarrival times); for ex-
ample, positively correlated interarrivals often cause
an increase in the mean customer waiting time. The
growing realization of the impact of dependence in
traffic streams on system performance provides the
motivation for devising Monte Carlo methods for
modeling and generating autocorrelated variates with
a wide variety of marginal distributions and autocor-
relation structures (see, e.g., Bratley et al. 1987).
In practice, we aim to devise a model having:

1. a marginal distribution that matches its empiri-
cal counterpart.

2. an autocorrelation function that approximates
its empirical counterpart.

3. sample paths that “resemble” the empirical data.

See Lewis and McKenzie (1991) and Schmeiser (1990)
for some representative references.

In this paper we focus on a class of methods
called TES (Transform-Ezrpand-Sample), introduced
in Melamed (1991), and further developed in Jager-
man and Melamed (1992abc). TES methods can gen-
erate a variety of sample paths, and autocorrelation
functions with a variety of functional forms (mono-
tone, oscillating and alternating), while guarantee-
ing an exact match of the marginal distribution to
its empirical counterpart. In addition, TES allows
great latitude in approximating the empirical auto-
correlations, even as it maintains the matching of the
marginal distributions. Furthermore, the autocorre-
lation function of a TES model can be computed from
fast numerical formulas without requiring simulation.
This is important in interactive modeling, since the
numerical computations are much faster than the cor-
responding simulation-based statistical calculations.
Consequently, the modeling process can be imple-
mented as a heuristic search on a large parameter
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space, and this search can be effectively speeded up
by casting it into a visual interactive style.

This paper describes both the TES methodology,
and a software environment, called TEStool, which
supports this methodology. TEStool is written in
C++ and runs on Sun workstation platforms under
the OpenWindows display manager. It makes heavy
use of visualization in order to provide a pleasant in-
teractive environment supporting modeling of depen-
dent time series. This environment speeds up the
modeling search process, cuts down on modeling er-
rors and relieves the tedium of repetitive search. In
addition, 1t casts the search into an intuitive pro-
cedure, transforming it into a kind of video arcade
game, and enabling its use by non-experts and ex-
perts alike.

2 TES METHODS FOR GENERATING
AUTOCORRELATED SEQUENCES

TES processes are essentially autoregressive schemes
with modulo-1 reduction. TES generation methods
are easy to implement on a computer, enjoying a low
computational complexity.

Let || = max{n integer : n < z} be the integral
part of z, and (z) = 2 — (2] be the fractional part of
z. Let {V,} be a sequence of iid (independent identi-
cally distributed) random variables with a common,
though arbitrary, density fy. Further, let Uy be uni-
form on [0, 1) and independent of each element of the
sequence {V,, }. The random variables V,, are referred
to as innovalions.

Pure TES processes are stationary and come in two
flavors: TES*, giving rise to a sequence {U/}}, and
TES™, giving rise to a sequence {U/}. The definition
of {l/f} is given recursively by
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and the sequence {{/~} is defined in terms of {U;}}
by
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TES methods achieve coverage of the full range of
feasible lag-1 autocorrelation; TES* methods cover
the positive range [0, 1], while TES™ methods cover
the negative range [—1,0]. It can also be shown
(Jagerman and Melamed 1992a) that (1) and (2) each
give rise to a sequence of cid (correlated identically
distributed) random variables with uniform marginals
on [0,1). However, in practice, one is actually inter-
ested in transformed TES processes {.\'}}'} and {.X] },

obtained from (1) or (2) by some transformation D
(called a distortion), i.e.,

NP = DY), X7 =DUp). (3)
The transformation D, and the fact that the se-
quences {U}} and {U;]} all have uniform marginals
on [0,1), allow us to generate random sequences with
essentially arbitrary marginals by using the inversion
method; for a given distribution function F', the inver-
sion method takes D = F~! (see, e.g., Bratley, Fox
and Schrage 1987). The resultant sequences {X}
and {X,;} are both cid with marginal distribution
F. The corresponding autocorrelation functions are
denoted by p}t, and p};, respectively.

A Monte Carlo simulation of (1) and (2) can al-
ways provide an estimate of the model’s autocorre-
lation function, if a sufficient sample size is gener-
ated. This approach, however, can be costly in terms
of time complexity, especially when high autocorrela-
tions necessitate large sample sizes for adequate sta-
tistical reliability. Fortunately, there are numerically
computable formulas for the autocovariance functions
and spectral densities of {.\;}} and {X;} which are
fast, efficient and accurate (Jagerman and Melamed
1992abc). For a given lag 7, the corresponding auto-
correlation functions are given, respectively, by

2 - .
Px(r) = Ezﬁ[f&(iQﬂV)llD(iQwV)IQ (4)
v=1
and
pi(r) T even
px(T) =9 o9 & .
* %Zé}%{f&(z"hz/)]%w(i‘hu)z] r odd

v=1
(5)

where o3 is the common variance of {X}} and
{X;}, tilde denotes the Laplace Transform, f7 is
the 7-fold convolution of the innovation density fv,
R denotes the real part operator, and i = v/=1. It
1s worth noting that the effects of the innovation and
distortion are conveniently separated in (4) and (5).
More importantly, the series converge rapidly.

Since, in practice, marginal distributions of empir-
ical data are represented by an empirical histogram
H, we use the histogram distortion

N
Di(z) = 5. llck_l.cm[ek+<m—ck_1>%J (6)

k=1

where N is the number of histogram cells of the form
[k, 7k), we = 7r — €k is the width of cell k, 14 is the
indicator function of set A, py is the probability of cell
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Figure 1: Recursive Generation of a Basic TES Pro-
cess.

k, and Ci = Zle pk 1s the cumulative distribution
of {pr} (Co =0 and Cy = 1).

An important basic innovation, investigated in
Melamed (1991), 1s given by

Vo = L+(R=L)Z,, —-05<L<R<05, (7)

where {Z,} is an iid sequence of random variables
with uniform marginals on [0,1); that is, {Z,} is
some pseudo-random number stream available on
most computers, and the V, are uniform on [L, R).
TES processes attendant to (7) are parameterized by
pairs (L, R). It is often more convenient to use an
equivalent parameterization (o, ¢), where

b=t (8)

a=R-1L, L

where 0 < a<land 0 < |¢| < 1/ — 1.

Intuitively, the modulo-1 arithmetic used in defin-
ing TES processes in (1) has a simple geometric in-
terpretation as a Markovian random walk on the unit
circle (circumference 1), with random step size V.
Consider the basic TES process defined by (7) and
(8), and refer to Figure 1. Here L and R are mea-
sured as displacements from the current TES variate
U, (the relative origin), & is the length of the interval
straddling Uy, and ¢ is an indication of the rotation of
that interval from symmetric straddle (roughly speak-
ing, ¢ is an indication of the angle between Uy and
the interval midpoint M,). If ¢ = 0, the next TES
iterate is equally likely to fall to the left or to the
right of the current iterate. In this case, E[V,] =0,
and the random walk has zero drift around the cir-
cle. Furthermore, pf;(7) is monotone decreasing in
the lag 7. If ¢ > 0, we have E[V,] > 0, and the drift

Un+ L) U,

U,- 0.5)/ \(U,, +0.5)

Figure 2: A 3-Dimensional Representation of a Step
Function Density on the Unit Circle.

is positive, resulting in cyclical sample paths with the
attendant pJ;(r) oscillating about zero in the lag 7.
The case ¢ < 0 is analogous but with opposite drift.

A simple but considerable generalization of the ba-
sic innovation sequence {V,} given in (7) is attained
by specifying fy as a step function

K

fv(z) = Z L, Ri)(T)

k=1

Py

R L (9)

so each Vj, is a mixture of uniform variates on [Ly, Ry)
with probability P;. A 3-dimensional representation
of a step function density (9) appears in Figure 2. The
generalized parameterization specifies a set of triplets
{(Lk, Ri, P)}£_, where the step boundaries L and
Ry satisfy —0.5 < Ly < Ry < 05,and 0 < P, <1
is the probability of triplet & (3°,_, P = 1). For
convenience, we also require that the triplets do not
overlap (i.e., Ry < Lg41, k=1,..., A —1). Clearly,
step function densities with support on [—0.5,0.5] can
approximate arbitrarily closely any densities with the
same support.

The sample paths of {.\;}} and { X7} often exhibit
a visual “discontinuity” whenever the corresponding
uniform random walks {U}} and {U,;} “cross” point
0 on the unit circle in either direction (see Melamed
1991 and Jagerman and Melamed 1992a). In order
to “smooth” TES sample paths or to skew them var-
iously, one can use the so-called family of stitching
transformations Se, parameterized by 0 < £ <1, and
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defined for all y € [0, 1) by

, f0<y<¢

Selw) = o (0)
l—y .
]_—6, fE<y<l
Processes of the form {S¢(U/F)} and {S¢(U;)} are
called stitched TES processes. Note that for 0 < £ <
1, the S¢ are continuous on the unit circle; in par-
ticular, S¢(0) = Se(1). It can be shown (Jagerman
and Melamed 1992a) that all S¢, 0 < € < 1, preserve
uniformity; consequently, stitched TES processes can
still be distorted to arbitrary marginals.

The reader is referred to Melamed (1991) and
Jagerman and Melamed (1992a) for detailed discus-
sions of the qualitative behavior of TES autocorrela-
tion functions and sample paths as a function of the
innovation density and the stitching parameter.

e

3 THE TES MODELING METHODOL-
OGY

The TES modeling methodology is supported by the
TEStool software environment; consequently, it will
be discussed from the vantage point of a user interact-
ing with TEStool in order to fit a TES model to em-
pirical data. A more detailed description of TEStool
services 1s deferred until later.

A typical user would start out with a sample of
some empirical time series data representing a partial
process history (e.g., bitrates on a link in a commu-
nications network).

A complete specification of a TES model via the
TES modeling methodology consists of two parts:

1. Specifying the distortion: As mentioned in Sec-
tion 2, the distortion D takes a TES process,
marginally uniform on [0,1), and transforms
each element in the time series via (3). TEStool
provides distortions for uniform, exponential or
geometric marginals. When modeling empirical
data, D corresponds to the inverse distribution
function of the empirical data, obtained from the
empirical density function (itself modeled as a
histogram); that is, D = Dy as given in (6).
TEStool automates the generation of Dy from
empirical data. It enables the user to read in
empirical datasets, to generate and display an
empirical histogram of the data and to extract
Dy from it.

2. Finding an innovation: The core activity of the
modeling process in TEStool is an heuristic
search for a suitable innovation. Recall that

{X}} and {X;} always have the requisite dis-
tribution F' regardless of the innovation {V,,} se-
lected. However, different innovations give rise to
different stochastic processes with different au-
tocorrelation functions, thereby providing great
leeway in fitting autocorrelation functions. In
TEStool, the user searches through innovations
in the space of step function densities whose sup-
port is contained in [—0.5,0.5], in order to fit a
prescribed autocorrelation function (usually, an
empirical one). At the same time the user also
looks for models whose simulated sample paths
“resemble” their empirical counterparts. Addi-
tional details will be given in the sequel.

4 THE TEStool GRAPHICAL USER IN-
TERFACE

TEStool i1s an interactive modeling environment
(Geist and Melamed 1992) with a graphical user in-
terface (GUI). It provides services to generate and
modify TES models, and to examine their statistics.
During a typical modeling session, the user conducts
an heuristic search for innovations that give rise to
TES models whose statistical characteristics approx-
imate those of the empirical data.

TEStool classifies data into three dataset types. An
empirical dataset contains data whose source is ex-
ternal to TEStool. The data consist of an empirical
time series or statistics computed from it (histogram,
autocorrelation function or spectral density). A sim-
ulated dataset contains data whose source is a Monte
Carlo simulation of a TES model. The data consist
of a sample path realization or statistics computed
from it (histogram, autocorrelation function or spec-
tral density). A numerical dataset contains the re-
sults of a numerical computation of the autocorrela-
tion function, or the spectral density of a TES model,
calculated via (4) and (5).

Figure 3 displays a TEStool screen as it might ap-
pear during a typical modeling session. The parent
window is sub-divided into four canvas areas designed
to display various types of color graphics and, at the
bottom, two smaller text display panels that provide
access to the host operating system and, in future ver-
sions, to display help messages. Located within the
top margin of the screen is a row of buttons which
create menus and forms that support operations not
specific to any canvas:

1. The View button: controls the number of can-

vases displayed, ranging in number from one to
four.
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Figure 3: A Typical TEStool Screen in a Modeling Session of Empirical Time Series
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Figure 4: The Sample Path and Autocorrelation Plots Expanded Horizontally.

2. The Specify Model button: creates either text graphical displays supported by TEStool (time
or graphic sub-windows to construct a TES series, histogram, autocorrelation or spectral
model. density).

3. The Clear All button: deletes all data and 3. The Update Method selector:  determines
models and clears all canvases. whether computations are performed only on

user command, or interactively in response to

4. The Read/Write button: creates a menu allow- modifications to the current model.

ing the user to save the current modeling session

to disk or to restore a previous session from disk. 4. The Plot Method selector: determines whether
5. The Quit button: requests user confirmation to to create a new pl.ot or redraw the existing pl_ot
: ) for each computation. Multiple plots may be dis-
exit from TEStool.
played on the same canvas as long as they are all
Directly beneath each of the four display canvases of the same class.

is a control panel containing menu-buttons and se-
lection gadgets specific to each canvas; these allow
a user to populate a canvas with a variety of graphic
displays and to tailor their appearances. The buttons
and selection gadgets in each control panel have the
following functions:

5. The Compute Method selector:  determines
whether empirical, simulation or analytic meth-
ods are to be used to compute the graphical dis-
play class assigned to the canvas.

4.1 The Graphic Model Specification Win-

1. The Data button: creates a menu allowing se- dow
lection of various types of diskfile input/output ; . .
operations. The TEStool GUI provides both graphical and tex-
tual windows for the creation and modification of
2. The Compute button: creates a menu allowing both the innovation density and the stitching param-

assignment of the canvas to one of four classes of eter. A step function innovation density may be spec-



Modeling Stationary Time Series

141

=
=] TEStool
View T ) Specify Model V) Clear All ) Read/Write Y ) Quit )
HISTOGRAM FORSAMPLE AND
MODEL OF footbell dats.e
J:[bumple
wa— simulated TES+(x=0.8 with multiple cells)
1 1 _
o 10 111e-08 -
078 -~~~ cmenm------- N 07s B8.8%5¢-08 -
D
E
N
S 664e—06 -
[ R R R os 1
T
Y
4.43e-06
028 -~ 02s
I 221e-06 -
0.5 -025 00 025 0s
o Graphic Model Specitication 0.000
X y g
Create/modify ign E :0.5000 0.0 ewmmme ——— 1.0 723630 1265730 1607630 2259560 2601660
— Move + —| U0:0.5000 0.0 c—m—p——— 1.0 | | 5 . VALUE
— B Ll
Delete x: 0.6550 / > -
w1 : 02375 Distortion: T Unif -
crear modet Y s n: <J orm c _Data) ) U_plfhle Method: Plot Method: Cnmpule Method:
S—— ompute
—_
T =
-
| -
hd
= -

Figure 5: The Innovation Step Density (left); the Empirical and TES Simulation Histograms (right)

ified visually (see the left side of Figure 5) by graph-
ically constructing a representation of Figure 2 as it
would appear if it were unwrapped and mapped onto
a 2-dimensional plane. This is accomplished by using
the workstation mouse to sweep out a set of one or
more non-overlapping rectangles, which represent the
steps of an innovation density, on a rectangular pla-
nar grid, as shown in the left canvas of Figure 5. All
points on the horizontal axis of the innovation canvas
correspond to positions on the unit circle illustrated
in Figure 2, and thus range from —0.5 to 0.5, while
the vertical axis values represent probabilities and so
range from 0.0 to 1.0. Each step may be represented
by a (Lk, Rk, Py) triplet defined in the following way:
the base of any step k always rests on the .\ axis; the
left and right step edges correspond to Ly and Ry,
respectively, and the height of the step corresponds
to P. This representation is not a valid step prob-
ability density function because the total area under
the steps is not constrained to sum to one. However,
this method of representing a step function density is
more useful for the current application, since it has
the advantage of being easier to manipulate graphi-
cally. The graphical advantage follows from the fact
that the sum of the heights of the steps is bounded

by one, whereas the height of a standard density is
unbounded.

The TEStool innovation canvas allows the user to
add and modify as many steps as desired, but rigidly
enforces the constraint ) Pr < 1.0. The innova-
tion software continuously monitors the value of this
sum and truncates any step at the height which ex-
actly satisfies Y. P. = 1.0. If }° P < 1.0, the
TEStool computation modules will refuse to perform
any calculations, displaying instead an appropriate
error message. Two slider gadgets are provided in
the control panel appearing just below the innova-
tion canvas (left hand side of Figure 5) to allow the
user to modify the value of the stitching parameter €
associated with (10), as well as the initial TES variate
Usp.

4.2 The Interactive Mode

A major advantage of the TEStool GUI lies in its
ability to rapidly relay updated visual statistics to
the user in response to modifications to the model
parameters displayed in the innovation canvas. An
initial set of calculations must first be performed on
an empirical time series dataset (which appears in
the upper left display canvas of Figure 3) by com-
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puting and displaying the empirical histogram (upper
right canvas) and autocorrelation function (lower left
canvas). Following construction of a valid innovation
model (lower right canvas) as described in Section 5,
another round of simulation and/or analytical com-
putations must be performed in the ‘On Command’
mode. A user may then elect to assign any canvas dis-
playing dataplots to the interactive mode by means of
the ‘Update Method’ selector gadget. Subsequently,
whenever changes are made to the stitching parame-
ter or to the probability steps in the innovation canvas
resulting in a legal model (i.e., Y~ P = 1.0), TEStool
immediately re-computes and re-displays any graphs
associated with those canvases which have been as-
signed to the interactive mode.

The time required for TEStool to respond in in-
teractive mode depends on the particular computa-
tions requested, which may be simulated or analyti-
cal. In practice, if the autocorrelations are computed
analytically and the sample path simulations gener-
ate a relatively small number of points (on the order
of 1000), the computations result in a response time
on the order of one second on an unloaded SPARC-
station2. Autocorrelation statistics generated by a
Monte Carlo simulation would increase the response
time accordingly, as would an increase in the number
of sample points generated.

The ability to continually change a TES model and
obtain prompt visual feedback on the results serves
to facilitate the assessment of progress in the task of
simultaneously approximating both an empirical au-
tocorrelation function and a simulated sample path.
Thus, the TEStool GUI serves as an effective aid in
helping to select subsequent modifications of the in-
novation steps and stitching parameter. The heuris-
tic search process for an appropriate TES model be-
comes intuitive, since the actions performed in the
model window bear strong similarities to the knobs
and joysticks used in interactive video arcade games.
TEStool users can quickly acquire a qualitative and
quantitative understanding of the relationships be-
tween the model parameters and its corresponding
sample paths and statistics, without having prior
grounding in the abstract underlying mathematics of
TES processes. A resultant benefit is that the task
of constructing a TES model may be readily dele-
gated to a non-expert. On the other hand, an expert
user experimenting with TEStool could possibly ex-
tract rules that would facilitate the heuristic search
for an appropriate model. In this direction, future
versions of TEStool may incorporate an automated
search module designed to perform multiple offline
iterations of the modeling process, in an attempt to
identify a candidate set of TES models.

5 EXAMPLE: TES MODELING OF COM-
PRESSED VBR VIDEO

Figures 3-5 are reproduced from an actual worksta-
tion display screen to illustrate an example in which
TEStool has been used to model a sequence of vari-
able bitrate (VBR) encoded video frames. Figure
3 depicts the TEStool screen sub-divided into four
graphical display canvases which represent different
stages of the modeling process. The upper left can-
vas plots the empirical sample path of compressed
frame bitrates (round markers); superimposed on it
i1s a model sample path generated by a Monte Carlo
simulation of a TES model (diamond markers). The
innovation density incorporated in that TES model is
represented graphically in the lower right hand mod-
eling window. The corresponding histogram and au-
tocorrelation function are plotted against their em-
pirical counterparts in the upper right and lower left
hand canvases, respectively.

Recall that the TES methodology always guaran-
tees that for any innovation density, the marginal
distribution of a TES model will asymptotically ap-
proach that of its empirical counterpart, as the sam-
ple size approaches infinity; indeed, the right can-
vas Iin Figure 5 shows excellent agreement with the
corresponding histograms. This is one way in which
the TES methodology offers a distinct advantage over
similar models, such as autoregressive schemes, for
which 1t may be impossible to match an arbitrary
empirical marginal distribution (histogram).

The selection of the innovation density parameters
represented in Figures 3 and 5 was accomplished by
an 1iterative heuristic search process. The object of
the search is to find an “acceptable fit” of both the
TES autocorrelation function and simulated sample
path to their respective empirical counterparts (as
stated previously, the fit of the marginal distribution
is guaranteed.) The process of finding an “accept-
able fit” to multiple plots is greatly facilitated and
made practical by the TEStool graphic display can-
vases which will be detailed in this section.

In the current example, parameters A, Ly, R; and
£ were constantly modified by use of the workstation
mouse. The sequence of modifications was guided
only by a qualitative understanding of the behavior
of TES processes. The search could proceed rapidly,
since the model autocorrelation function was com-
puted analytically. These computations rely upon
(4), with the specializations of the Laplace transform
of the histogram distortion (6) and the step function
density (9), both of which were computed in Jager-
man and Melamed (1992b). Since an average video
scene in this example lasts for only a few seconds and
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the complete dataset consisted of 214 sample points,
we only attempted to match the first 20 lags of the
empirical autocorrelation function; the statistical re-
liability of the higher lags is doubtful, anyway.

The heuristic TES modeling process described
above settled on the 2-step innovation density ap-
pearing in Figure 3, and again in Figure 5. In ad-
dition, the symmetric shape of the empirical sample
path in Figure 4 suggested a stitching transformation
Sg, with £ = 0.5. The entire search process that re-
sulted in identification of the model reported here was
performed in less than an hour.

The criterion for 1dentification of an “acceptable
fit" of TES-generated sample paths in the current
implementation of TEStool remains a subjective one,
requiring a level of pattern matching skills that is
more readily attained by human operators than by
the most sophisticated computer algorithms. This
follows from the recognition that the modeling goal
is not to reproduce, point for point, the original em-
pirical sample path, but to construct a TES process
that will capture the underlying characteristics of the
empirical sample, so that something akin to a Tur-
ing Test might be successfully applied: a significant
percentage of human observers would not be able to
distinguish the empirical sample path from that gen-
erated by a TES process simulation. We believe it is
worth some effort to achieve this matching, since sim-
ilarity of sample paths would increase the level of con-
fidence in the model. We emphasize that such quali-
tative matching is done in addition to, not instead of,
the quantitative matching of marginal distributions
and approximation of autocorrelation functions.

6 CONCLUSIONS

This paper reported on a new modeling methodol-
ogy, TES, and on a supporting visual modeling envi-
ronment, TEStool. The TEStool GUI facilitates an
heuristic search for TES models that simultaneously
capture both the marginal distribution and autocor-
relation function of empirical times series data.
Autocorrelated time series abound in practical ap-
plications. A case in point is bursty (autocorre-
lated) traffic in high-speed telecommunications net-
works. When offered to queuing systems, autocor-
related traffic can give rise to far worse performance
measures as compared to those predicted by classi-
cal queuing models (which ignore autocorrelation).
Consequently, there exists a strong need for mod-
eling utilities that can accurately characterize auto-
correlated sample data (i.e., field measurements) and
generate replicate stationary dependent time series.
Such models may then used as input drivers (source

generators) for Monte Carlo simulations.

The TES modeling methodology appears to pro-
vide more realistic models of actual dependent
stochastic processes than do other methodologies,
since 1t attempts to fit both marginals and autocorre-
lations. Broadly speaking, these other methodologies
usually employ one of the following two strategies:
The first stategy constructs a stochastic process with
a known autocovariance structure (e.g., a first-order
autoregressive scheme). However, with this approach
the desired target marginals are difficult to obtain.
The second strategy is the reverse of the first. It
constructs a random variate having the prescribed
marginal, and generates additional variates by em-
ploying a selected distribution-preserving transforma-
tion. However, this transformation is specific to each
prescribed marginal, and cannot always be devised.
(See Jagerman and Melamed 1992a for representative
references). In contrast, the TES methodology often
possesses sufficient leeway to fit both marginals and
autocorrelation structure simultaneously.

Of course, TES methods do not provide an accept-
able fit for every conceivable stochastic process. For-
tunately, in many of these cases it is possible to per-
form additional transformations that render the data
more amenable to TES modeling. A case in point is
described in Melamed et al. (1992). Here the empir-
ical data exhibited periodic aspects which could not
be modeled by TES satisfactorily. However, removal
of the periodic components revealed by periodogram
analysis yielded residuals data that could be modeled
by TES; the resulting composite model was in excel-
lent agreement with the empirical data.

The TEStool visual environment was found to be
indispensable to efficacious usage of the TES model-
ing methodology. Our experience shows that it in-
creases both the speed and quality of the TES mod-
eling process. TEStool transforms the potentially te-
dious search process required for constructing a TES
model into something akin to a video arcade game,
making it possible to rapidly investigate the behav-
1or of TES autocorrelations as a function of the in-
novation and distortion parameters. By providing
immediate visual feedback on the results of incre-
mental changes to a TES model, a TEStool user is
able to quickly scan through a large volume of can-
didate TES processes and often converge to an ap-
propriate model. Some specific experiences resulting
from the use TEStool have been described in this pa-
per. Extensive additional experience with TEStool
has shown that TES processes exhibit a rich behav-
ioral “dynamic range,” and that certain innovations
can result in very complex autocorrelation functions
and quite intricate sample paths.
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