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ABSTRACT

This paper discusses the statistical analysis of output
from computer simulations. In particular, we con-
sider the problems of initialization bias (both how
to identify it and what to do about it), steady-state
point and confidence interval estimation, and selec-
tion among competing system designs.

1 INTRODUCTION

If the input processes driving a simulation are random
variables, then the experimenter must also regard the
output from the simulation as random. Thus, runs
of the simulation do not directly yield the desired
measures of system performance—the runs only give
estimates of the performance measures. Since the es-
timators are themselves random variables, they are
subject to sampling error. This sampling error must
be taken into account when conducting a proper sta-
tistical analysis of the estimators; only then can the
experimenter make valid inferences or decisions con-
cerning the performance of the underlying system.
Unfortunately, since simulations never produce in-
dependent and identically distributed (i.i.d.) normal
output, “classical” statistical techniques do not apply
to the analysis of simulation output. The purpose of
this paper is to discuss practical methods to perform
statistical analysis of output from discrete-event com-
puter simulations. The paper follows the discussion
in Banks, Carson, and Goldsman (1990).

In order to facilitate the discussion, we identify two
types of simulations with respect to output analysis:

1. Terminaling (or transient) simulations. Here, the
nature of the problem explicitly defines the length
of the simulation run. An example of a terminating
simulation is that of a bank that closes at a specific
time each day.
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2. Nonterminating (or steady-state) simulations. In
this case, we are interested in the long-run behavior
of the system. If the simulation runs long enough, it
presumedly approaches a “steady state,” independent
of the simulation’s initial conditions. An example of
a steady-state simulation is that of a continuously
running production line for which the experimenter
is interested in some long-run performance measure.

Techniques to analyze output from terminating
simulations are based on the method of independent
replications; see §2. Additional problems arise in
the case of steady-state simulations. For instance,
one must worry about the problem of starting the
simulation—how should the simulation be initialized
at time zero, and how long must the simulation be
run before data representative of steady state can be
collected? These initialization problems are discussed
in §3. Then §4 presents techniques for point and con-
fidence interval estimation for steady-state simulation
performance parameters. §5 deals with the problem
of comparing a number of competing systems. Fi-
nally, §6 presents conclusions and gives general refer-
ences for the interested reader.

2 TERMINATING SIMULATIONS

We first investigate the case of terminating simula-
tions. Suppose we simulate some system of interest
over a finite time horizon and that we obtain discrete
simulation output data Y7,Y5,...,Y,,. The number
of observations m can be a constant or a random
variable. For example, the expermenter can spec-
ify a priori the number m of customer waiting times
Y1,Y2,...,Yn to be taken from a simple queueing
simulation; or m could denote the random number
of customers observed during a pre-specified time pe-
riod [0,7T]. Alternatively, we might observe contin-
uous simulation output data {Y'(¢)|0 <t < T} over
some pre-specified interval [0, T]; for instance, if we
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are interested in estimating the time-averaged num-
ber of customers waiting in a certain queue during
[0,T], Y(t) might represent the number of customers
in the queue at time t.

For now, suppose that the goal of the experiment
1s to estimate the quantity

6 = E[Y ],

where the sample mean is simply

Yy _lm_
}m=;§}/:

in the discrete case, an

d
— 1 (T

in the continuous case.

By definition, Y, is an unbiased estimator for 6;
but a sound statistical analysis requires that we also
provide an estimate of precision of Y, e.g., an esti-
mate of Var(Y,,). Since the Y;’s are not necessarily
1.1.d. random variables, it is may be the case that
Var(Y ) # Var(Y;)/m for any i. Thus, one must be
very careful when estimating Var(Y,,). In particular,
an experimenter should not use the familiar estimator
S%/m =" (Y = Ym)?/[m(m = 1)], which is likely
to be extremely biased as an estimator of Var(Y,,).

One can instead use the method of indepen-
dent replications to estimate Var(Y,,). This simple
method proceeds by conducting b independent sim-
ulation runs (replications) of the system of interest,
each replication consisting of m observations. It is
easy to force the replications to be independent—just
reinitialize each replication with a different pseudo-
random number seed. Let us denote the sample mean
from the ith replication, i = 1,...,b, by

where Y, ; is the jth observation from the ith replica-
tion, fori=1,...,band j = 1,...,m. If each run is
initialized under the same operating conditions (e.g.,
all queues empty and idle), then the sample repli-
cation means Z,,...,Zy are t.i.d. random variables,
and the obvious estimator for Var(Y,,) = Var(Z;) is

b
1 —
= — E Z,‘— 2,
VR b_ 1 i:l( Zb)

where

N
Il

b
Zy =) Zifb
i=1

is the grand sample mean of all the replicate means.
Notice the resemblance of Vg to S?/m. The differ-
ence is that Vg is usually quite a bit less biased for
Var(Y ) than is S /m, since the replicate means used
in Vg are i.i.d.

With the estimator Vg for Var(Y,,) = Var(Z;) in
hand, one can state that Vr/b is a reasonable vari-
ance estimator for Z;. If the number of observations
per replication m happens to be large enough, we
can go further. For if m is large enough, a central
limit theorem allows us to assume that the replicate
means are approximately i.i.d. normal. Then we im-
mediately have an approximate 100(1—a)% two-sided
confidence interval for 6,

9 € Zp£ty_1,a/2\/ VR/D, (1)

where t4. represents the 1 — 4 quantile of the t-
distribution with d degrees of freedom.

For example, suppose that our goal is to estimate
the expected average waiting time for the first 5000
cutomers in an elementary queueing system. We shall
make five independent simulation replications of the
system, where each run is initialized empty and idle
and consists of 5000 customer waiting times. Fur-
ther suppose that we calculate the following replicate
means:

l 1 2 3 4 5
Z; |32 43 51 42 46

Then we can easily calculate Zs = 4.28 and Vg =
0.487. Setting the level « = 0.05, we find that
ts0025 = 2.78, and (1) yields [3.41,5.15] as a 95%
two-sided confidence interval for the expected aver-
age waiting time for the first 5000 customers.

The method of replications can be used to obtain
variance estimates for statistics other than sample
means; and then it can be used to obtain confidence
intervals for quantities other than E[Y,,]. For in-
stance, one might be interested in estimating certain
quantiles. For discussions on such additional uses
of independent replications, see any of the standard
texts cited in §6.

3 INITIALIZATION PROBLEMS

A difficult problem, particularly in steady-state out-
put analysis, concerns the treatment of initialization
bias. Before any simulation can be run, the experi-
menter must provide initial values for all of the sim-
ulation’s state variables. Since the experimenter may
not know what initial values are appropriate for the
state variables, these values are usually chosen some-
what arbitrarily; for example, we might decide that
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it is easiest and most convenient to initialize a queue
as empty and idle. Such a choice of initial conditions
can have a significant but unrecognized impact on the
outcome of the simulation run. Thus, the initializa-
tion bias problem can lead to analysis errors.
Schruben and Goldsman (1985) and Banks, Car-
son, and Goldsman (1990) give several examples of
problems concerning simulation initialization.

e Visual detection of initialization effects is some-
times quite difficult. This is particularly true in
the case of stochastic processes having a high in-
trinsic variance (such as queueing systems).

e How should the simulation be initialized? Sup-
pose that a machine shop closes at a certain time
each day, even if there are jobs waiting in line to
be served; these unserved jobs must be served
when the shop opens the next day. Thus, a sim-
ulation model of the shop should start each day
with a demand that depends on the number of
jobs remaining from the previous day.

¢ Initialization can cause estimators of steady-
state parameters to be biased and to have high
mean squared error.

o Initialization can cause confidence intervals for
steady-state parameters to have poor coverage.

Since initialization bias raises such serious concerns
as those outlined above, one must ask how to detect
and deal with this type of bias? We first survey a
number of methods to detect the presence of initial-
ization bias.

1. Attempt to detect the bias visually by scanning
a raw realization of the simulated process. Unfortu-
nately, such a visual analysis can easily miss the bias
that happens to be present. Further, in a simulation
study with a large number of runs, a methodical scan
of voluminous data can become quite tedious. Some
suggestions that might help to make visual analysis
a bit more efficacious include transforming the data
(e.g., by taking logs or square roots), smoothing the
data (see Sargent 1979 or Welch 1981, 1983), av-
eraging data across several independent simulation
runs, and constructing so-called CUSUM plots (see
Schruben 1982).

9. Conduct statistical tests for initialization bias. For
instance, Kelton and Law (1983) propose an intu-
itively appealing sequential procedure to detect ni-
tialization bias. Schruben (1982), Schruben, Singh,
and Tierney (1983), and Goldsman, Schruben, and

Swain (1990) give a series of tests that check to see
whether the initial portion of the simulation output
seems to contain more variation than latter portions.

If imtialization bias is detected, one may want to
ameliorate its effects. Two simple methods for deal-
ing with the bias are suggested in the simulation lit-
erature.

1. Truncate the output. It is common practice to
allow simulations to “warm up” before data are re-
tained for analysis. This is referred to as output trun-
cation. The experimenter hopes that the remaining
data are representative of the steady-state system un-
der study. Since it is such a simple concept, output
truncation is probably the most popular method for
dealing with initialization bias. Indeed, many sim-
ulation languages have built-in truncation functions
(e.g., the RESET command in GPSS). The obvi-
ous problem with truncation lies in finding a good
truncation point. If the output is truncated “too
early,” significant initialization bias might still exist
in the remaining data. If the output is truncated too
late, then “good” observations might be wasted. A
number of truncation rules have been proposed as
described in the surveys of Gafarian, Ancker, and
Morisaku (1978), and Wilson and Pritsker (1978a,
1978b). Unfortunately, these rules do not seem to
perform well in practice. A good suggestion 1s to
conduct several independent runs of the simulation,
average the observations across these runs, and then
visually choose a truncation point based on the aver-
aged run. Welch (1983) describes a visual/graphical
approach. A more sophisticated truncation rule is de-
scribed by Chance and Schruben (1992).

2. Make a very long run. One might try to overwhelm
the effects of initialization bias by conducting a very
long run. This method of bias control has some good
points. Obviously, it is simple to carry out. Further,
Fishman (1978) and other authors show that under
certain conditions, an untruncated stochastic process
ylelds point estimators for the steady-state mean hav-
ing lower mean squared errors than the analogous es-
timators from the truncated data. However, a severe
problem militates against the use of one long run as
a bias control technique: This method can be very
wasteful with observations; for some systems a pro-
hibitively excessive run length might be required in
order to render negligible any initialization effects.
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4 STEADY-STATE ANALYSIS

We shall henceforth assume that we are dealing
with stationary (steady-state) simulation output,
Y1,Y2,...,Y,. Suppose that our goal is to estimate
some parameter of interest, perhaps the mean cus-
tomer waiting time or the expected profit produced
by a particular factory configuration. As in the case
of terminating simulations, each run of the simula-
tion will probably give a different point estimate for
the parameter of interest. Thus, we should report the
value of the point estimator along with a measure of
its precision (variability). This measure of variabil-
ity is of key importance, and can be in the form of
a variance estimator or a confidence interval for the
parameter of interest.

Over the last 30 years, a number of methodologies
have been proposed in the literature for conducting
steady-state output analysis. We will briefly exam-
ine the two most popular: batch means and indepen-
dent replications. (As discussed earlier in §2, con-
fidence intervals for terminaiing simulations usually
evoke the method of independent replications.)

4.1 Batch Means

The method of batch means is frequently used to cal-
culate estimators for Var(Y,) or confidence intervals
for the steady-state process mean p. The method di-
vides one long simulation run Y;,Y,,...,Y, into a
number of contiguous batches. It then appeals to
a central limit theorem to assume that the result-
ing sample means from each batch are approximately
1.i.d. normal random variables. Specifically, suppose
that we partition Y7, Ys, ..., Y, into b nonoverlapping,
contiguous batches, each consisting of m Y}’s. (As-
sume for convenience that n = bm.) The ith batch
consists of the random variables

Y(i—l)m+1»Y(i—1)m+2: .. ')}/imv

t = 1,2,...,b. The ith batch mean is simply the
sample mean of the m observations from batch 7,

1 m
Zi = — Z:ly(i—l)m+j)
]=

t=1,2,...,b. Similar to the method of independent
replications (as described in §2), we define the batch
means estimator for the variance of each batch mean

by

b
N _ 1 . = \2
Vg = m;(z, Zy)*,

where

b
Y. = Zp = ZZ,'/b
i=1

is the grand sample mean of all the observations. If m
is large enough, the batch means are approximately
1.1.d. normal, and so (as in §2) we obtain an approx-
imate 100(1 — a)% two-sided confidence interval for

o
B E Zytty_1,4/2\/Va/b.

This equation looks a great deal like (1). The differ-
ence is that batch means divides one long run into a
number of batches, whereas independent replications
uses a number of independent but shorter runs.

For illustrative purposes, we refer the reader to the
example from §2 with the proviso that the Z;’s now be
regarded as batch means (instead of replicate means);
the same numerical manipulations now carry through
the example.

Although the technique of batch means is intu-
itively appealing and easy to understand, problems
can arise if the Y’s are not stationary (e.g., if signifi-
cant initialization bias is present), if the batch means
are not normally distributed, or if the batch means
are not independent. If any of these problems exist,
poor confidence interval coverage may result (unbe-
knownst to the experimenter). To relieve the initial-
ization bias problem, the user can simply truncate
some of the output or make a long run as discussed
in §3. Further, the lack of independence or normality
of the batch means can be countered somewhat by
increasing the batch size m. The reader is encour-
aged to consult the various textbooks cited herein or
Schmeiser (1982) for more information concerning the
method of batch means.

4.2 Independent Replications

Of the various difficulties encountered when using the
method of batch means, it can be argued that the pos-
sibility of correlation among the batch means is the
most deleterious. This problem is explicitly avoided
when one uses the method of independent replica-
tions, described in the context of terminating simula-
tions back in §2. The replicate means are independent
by their construction; but this method is not with-
out pitfalls. Since each of the b independent replica-
tions can contain initialization bias, initialization bias
presents more of a problem when using independent
replication than when using batch means. Further,
similar to batch means, we cannot guarantee the nor-
mality of the replicate means (although this is not
usually regarded as a serious problem). Of course,
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these problems wash out as the replicate size m be-
comes large. Nevertheless, for moderate m, Law and
Kelton (1984) regard the possibility of initialization
bias in each of the b replications as serious enough
to recommend the use of the method of batch means
over that of independent replications.

4.3 Other Methods

We mention several other popular methods for ob-
taining variance estimators for the sample mean and
confidence intervals for the steady-state process mean

o

Spectral Estimation. The batch means method at-
tempts to obtain a good estimate for Var(Y,). The
spectral method estimates this quantity (as well as
the analogous confidence intervals for p) in a com-
pletely different manner. In particular, this approach
works in the so-called frequency domain, whereas
batch means uses the so-called time domain. Spectral
estimation is sometimes a bit complicated to conduct,
but it works well enough to suggest that the reader
peruse some of relevant references, e.g., Heidelberger
and Welch (1981, 1983). Meketon and Schmeiser
(1984) describe the technique of overlapping batch
means, which links together the batch means and
spectral methods.

Regeneration. It is well known that the output from
many simulations can be broken into i.i.d. blocks
or groups, i.e., the simulation “starts from scratch”
probabilistically at certain regeneration points. An
easy example of this phenomenon occurs with the
M/M/1 queue’s waiting time process (which period-
ically returns to zero); the blocks whose endpoints
are defined by waiting times equal to zero are i.i.d.
The method of regeneration takes advantage of this
i.i.d. structure and, under mild conditions, produces
excellent estimators for Var(Y,) and confidence in-
tervals for . The method is easy to implement and
effectively eliminates any problems caused by initial-
ization bias. On the other hand, it is sometimes dif-
ficult to define reasonable regeneration points, and it
is sometimes the case that eziremely long simulation
runs are required in order to obtain a sufficient num-
ber of ii.d. blocks. For more detailed discussions,
the reader should see Crane and Iglehart (1975) and
Crane and Lemoine (1977).

Standardized Time Series. One often uses the cen-
tral limit theorem to standardize i.i.d. random vari-
ables into an (asymptotically) standard normal ran-
dom variable. Schruben (1983) extends this idea by

using a process central limit theorem to standardize
a stationary simulation process into a so-called Brow-
nian bridge process. (This Brownian bridge process
is a Gaussian process which we can regard as a gen-
eralization of the limiting standard normal random
variable from the ii.d. case.) Properties of Brow-
nian bridges are then used to calculate some nice
estimators for Var(Y,) and confidence intervals for
p. The standardized time series method is very easy
to apply and has some asymptotic advantages over
batch means (as described in Goldsman and Schruben
1984); however, long simulations may be required in
order for the necessary asymptotics to kick in (see
Sargent, Kang, and Goldsman 1992). The interested
reader should also see Glynn and Iglehart (1990) for
the theoretical development of the method.

5 COMPARISON OF SYSTEMS

An important problem in simulation output analy-
sis is that of comparing competing systems or alter-
native system configurations. Simulation is uniquely
equipped to help the experimenter conduct such anal-
ysis. In this section, we survey three techniques for
the problem of selecting the best of a number of sys-
tems.

5.1 Common Random Numbers

The idea here is to use exactly the same pseudo-
random numbers in exactly the same ways for cor-
responding runs of each of the competing systems.
By subjecting all the alternative systems to identi-
cal (or nearly identical) experimental conditions, we
hope that it will be easier to distinguish which sys-
tems are best even though the respective estimators
are subject to sampling error.

For instance, consider the case in which we wish to
compare two queueing systems, A and B, on the basis
of their expected customer transit times, 4 and g,
respectively. The system with the smaller 8-value is
said to be the better system. We have at our disposal
estimators {;’A and éB for 84 and g, respectively.
Obviously, we will declare A as the better system if
64 — 6 < 0. But if 4 and fp are simulated inde-
pendently, then

Var(§4 — fp) = Var(64) + Var(6p)

might be quite large; in such a case, our declaration
might lack conviction. If we could somehow reduce
Var(éA - éB), then our declaration would be a much
more confident one. By using common random num-
bers (and having a little luck), we can sometimes in-
duce a strong positive correlation between 04 and 6g:
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Var(éA - éB)
= Var(4) + Var(6g) — 2Cov(64,05)
< Var(f,4) + Var(dp),

and one obtains a savings in variance.

5.2 Antithetic Random Numbers

Similarly, if one can induce negative correlation be-
tween two unbiased estimators, 6; and 65, for some
parameter 6, then the unbiased estimator (8, + 6,)/2
might have very low variance.

The standard texts (see §6) all give advice on
how to run the simulations of the competing systems
so as to induce positive or negative correlation be-
tween them. If conducted properly, comnion random
numbers and antithetic random numbers can lead to

tremendous variance reductions; see the discussion in
Nelson (1992).

5.3 Ranking and Selection

Ranking and selection methods form another class
of techniques used to compare alternative systems.
Here, an experimenter might be interested in selecting
the “best” one of a number of competing processes.
Further, the experimenter might wish to correctly se-
lect the best process with a certain high probability,
especially if the best process is significantly better
than its competitors. Ranking and selection methods
are simple to use, fairly general, and intuitively ap-
pealing. There is significant literature on the subject;
the reader could start by looking at the relevant dis-
cussion in Law and Kelton (1991) before graduating
to the more mathematical references cited there.

6 CONCLUSIONS

Proper output analysis is one of the most important
aspects of any simulation study. Since simulation out-
put is never i.1.d. normal, the experimenter must be
very careful when attempting to analyze such data;
indeed, the purpose of this tutorial has been to alert
the experimenter to some of the issues and techniques
relevant to conducting valid analysis.

There are many interesting aspects of output anal-
ysis that we have not discussed in this paper, e.g.,
multivariate parameter estimation, sequential meth-
ods, and special variance reduction techniques. More
advanced papers on simulation output analysis can
be found elsewhere in this Proceedings, e.g., Hood and
Welch (1992), Nelson (1992), and Seila (1992). There

are also a number of excellent text books available
that devote substantial discussion to the subject, e.g.,
Fishman (1978), Banks and Carson (1984), Bratley,
Fox, and Schrage (1987), and Law and Kelton (1991).
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