Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIMULATION LANGUAGES AND DATABASE THEORY:
SOME CONSIDERATIONS FROM THE ENTITY-RELATIONSHIP MODEL

Robert S. Roberts
New Mexico State University
Las Cruces, NM 88003

ABSTRACT

The Entity-Relationship (ER) model is an increas-
ingly important database model for analyzing data
requirements. This model has become a popular
tool for use in computer systems analysis and design,
because it provides a systems analyst with a way to
model and design efficient data storage for a complex
system. The major result of this type of analysis is
the specification of data files which are readily im-
plemented with, and accessed by, relational database
software.

This paper applies the ER-database modeling
The ER
model provides a logical way to organize the data
from a simulation run. When the output data are
stored using this organization, a relational database

techniques to discrete event simulation.

can be used to make queries in a database language
that should answer virtually any question about the
simulation performance and facilitate the statistical
analysis the data. Also, the ER modeling approach
is contrasted with the models which are used in the
simulation language SIMAN. This comparison
provides insight into both approaches and suggests
some modifications and additions to the SIMAN
language which should improve its flexibility and
make it more consistent with the ER theory.

1 INTRODUCTION

The Entity-Relationship (ER) model is one of the
most popular modeling tools now used for database
design. The ER model is used to design a relational
database to store data for large and complex business

1228

systems. The key element of the ER-modeling
process is the construction of ER-diagrams which
are used to show relationships between key entities
in a system (Litton, 1987).

Of course, simulations of large systems have
complex data requirements. When discrete event
simulations are used to model complex systems, a
great deal of interesting data is often generated and
collected for analysis. Data from simulations is col-
lected for several reasons; the data may be used in
exploratory and statistical analysis, hypothesis test-
ing, and graphical presentation.

Although a number of graphical modeling tech-
niques have developed for the construction of dis-
crete event simulation, these tools are used primarily
to model the physical system or design the computer
program. For example, the state transition diagrams
or modeling diagrams used in SIMAN, SLAM and
GPSS, are mainly used to specify program logic
(Pritsker, 1986; Pegden, et. al. 1990; Pegden, 1986;
and Schriber, 1991).

Application of the ER-modeling techniques al-
lows another way to conceptualize simulations. In
this instance, the term entity as used in the ER
model is not defined or used in the same way as it
would be in simulation languages such as SIMAN,
SLAM or GPSS. Comparing one of these languages
with the ER modeling to simulations can provide
insight into each approach. Therefore, this paper
explains how the ER-model can be applied to the
design of discrete event simulations and looks at the
implications of this approach.

Simulation Languages and Database Theory

MODEL

A

SIMULATION |——»{ DATA |—1 ANALYSIS

A
RESULTS

Figure 1. The Process of Simulation and Analysis.

2 BACKGROUND

Data collection is often viewed as one of the major
parts of computer simulation. Figure 1, adapted
from Pegden (1986), shows a typical conception of
the organization of a computer simulation. In a first
step, a model is used to specify the system to be
simulated. Next, the model, expressed in a simu-
lation language, is compiled into a simulation pro-
gram. As the program runs, a file of data is collected
and some preliminary reports are generated. Finally,
the collected data is processed to produce summary
reports, do statistical testing, and construct graphical
presentations as a final result.

From a statistical point of view, there are two
main reasons for data collection: exploratory data
analysis and hypothesis testing. In exploratory work,
the simulation may be run under a variety of condi-
tions just to get a basic familiarity with the response
of the target system and the accuracy of the simu-
lation model. For these cases, it is probably desira-
ble to collect as much data as possible from each
simulation run. After the exploratory stage, hy-
potheses and conjectures will develop and then so
more formal experimental design approaches are de-
sirable. When the data collection is focused on an
experimental design, data collection may be limited
to the specific variables of interest.

No matter what data need to be collected, size and
volume of the output becomes an issue. Concerns
about storage requirements and memory size may
require some limits on the data to be collected. For
this paper, these concerns are largely ignored; for
now, it is better to first take a look at desired per-
formance without worry about technical constraints.

Many simulation models avoid saving large col-
lections of ‘raw data’. In these cases, the calculation

1229

of statistical measures is incorporated into the simu-
lation program. For example, in the simulation of
a single-server-queue, it may be very easy to collect
the data necessary to calculate the mean and variance
of the time-in-system by simply keeping track of
three variables. On the other hand, if data on the
time-in system for every job was saved in a file, then
not only could the mean and variance be calculated,
but correlations, plots, histograms, and many other
statistical measures and techniques could be applied
after the simulation run is complete.

Most of the commonly used discrete event simu-
lation languages have built in provisions for both the
calculation of limited statics and saving files of raw
data. For example, in SIMAN a TALLY block in
the model can be used to collect data on time-in-
system. When a TALLY is used, certain statistics
such as mean, variance, minimum, and maximum
are readily available in a report. In addition,
SIMAN also has a provision so that, each of the
system-times used by the TALLY block can be
saved in a file for later analysis by the SIMAN Out-
put Processor.

Unfortunately, there are some situations in which
these features are not sufficient. If the data on
time-in-system is tallied and stored in a simple se-
quential file, a number of statistical tests and graph-
ical procedures can be performed. IHowever, certain
questions might be asked such as “What was the av-
erage queue length which was seen by customers
who had system times greater than X minutes?” or
“What is the correlation between queue length and
time-in-system?” Unfortunately, because the
system-time data are stored in a simple file it would
not be easy to answer these questions without mod-
ifying the model and rerunning the simulation.
These complex queries could be answered if the data
were appropriately stored with database software.

3 DATABASE MODELS

In a well designed database system, information is
stored on records in files. In the case of the single
server queue, a natural way to store the information
would be to create records for each customer. In
database terminology, each record corresponds to an
entity (in this case, the customer) and the records
contain fields to specify information about the vari-
ous attributes of each entity. If a single server queue

1230

stimulation created a file to store the experience of
each customer, appropriate processing of that file
with a database query language could extract virtu-
ally any information about system performance or
at least about customer history. The data from a
customer file could also be directly processed as the
input to statistical analysis software such as SAS
(1985).

A database for a more complex system would
have information stored in several related files with
a database query language designed to extract infor-
mation from such a set of related files. Database
theory can be used to determine how data for various
systems should be stored for most efficient data re-
trieval and processing. A database has the advantage
of storing data so that any query can be expressed
simply by using the database query language. Ad-
hoc questions and reports can be handled easily with
the database query language.

4 RELATIONAL DATABASE MODELS

Iistorically, the three most popular database models
have been the network model, the hierarchical
model, and the relational modcl. The older database
models, including the hierarchical model and the
network model, required complex and sophisticated
storage techniques. The newer and more popular
relational model assumes that all data are stored in
a set of tables (or relations) which are usually im-
plemented as so-called flat files’. Each record in the
files corresponds to a row of the table and each field
corresponds to a column. Queries are performed
using a query language which manipulates the files.
A theory has been developed to prove that all queries
on the database can be accomplished with some
combination of three operations: the join, project and
select. The join operation is used to merge tables
(files), the project reduces a table to include only
specific columns, and the select reduces a table to
include only specific rows. In addition, data in re-
lated tables can be referenced by using key values.
For example, in a banking application, a customer
id-number can be used to find the appropriate record
in a customer file and also look up transactions in a
transaction file.

Roberts

Most database software includes extensions to the
simple relational language which include statistical
functions. These features do some data processing
so that the mcan, variance, or simply a count of se-
lect values is easily accomplished. Tor example, with
a database containing class registration information,
not only is it relatively casy to list all the students
enrolled in the simulation class but the query might
just ask about the total enrollment, the average en-
rollment in several classes.

Construction of the tables or files used for data
storage is a prime concern in relational database
theory. A process called normalization is used to
reduce larger tables into a set of more compact and
efficient related tables which can store the same data.
In the case of a student registration system, it would
be possible to store all data in one file. If this were
done, the file would be excessively large and contain
much redundant information. In such a file, each
record would contain information about a student
registered in a class and would have to include all
student information, course information, and the
course grade. Obviously, this is not an efficient
scheme. File normalization is used to break a large
file into a more efficient and logical set of related
files. For example, in the case of student registra-
tion, the information should be saved in three files,
a student file, a class file, and a registration file.
Fortunately, the FR-model techniques automat-
ically stores data into appropriate files which are ap-
propriately normalized into their efficient form.

The principles of normalization provide important
guidelines on how the most efficient data storage is
accomplished. Tor example, normalization requires
that non-key functional dependencies be removed
from a table. Tor example, in the case of a single
server queue, if each customer record contained
arrival-time and departure-time, then total time-in-
system would not be included in the record since it
is simply a functionally dependant on the arrival and
departure times.

A complete discussion of the theory of relational
databases and ER-modcls is beyond the scope of this
paper, but it is important to indicate that a large
body of knowledge exists and should be studied if
someone wants to apply these techniques to simu-
lation model design. This discussion only points out
the importance and rclevance of these approaches.

Simulation Languages and Database Theory

5 ENTITY-RELATIONSHIP MODEL

The E-R model is an extension of the relational
model and provides a straightforward way to graph-
ically analyze and model data for a system. ER
analysis automatically accomplishes most file nor-
malization. The ER model indicates the required
data files which are then implemented with a rela-
tional database.

The main feature of the model is the construction
of E-R Diagrams which show entities and relation-
ships between them. Figure 2 shows a typical
entity-relationship diagram. The final product of
this diagramming technique suggests the set of files
which could be used to place all the data in a rela-
tional database.

STUDENT | ADVISOR

CLASS

Figure 2. A typical entity-relationship diagram.

These ER diagrams contain important informa-
tion about the system and the data. In Figure 2, the
relationships between student, class, and advisor are
shown. Since each class has several students and
each student has several classes, this is a many-to-
many relationship. There is also a one to many re-
lationship between advisor and student. In addition,
each entity has a number of attributes. In some
versions of the ER diagrams, attributes are shown
somehow in the diagram. Although the definition
varies a little from author to author, an entity usually
represents a person, place, thing, or event. Events
include transactions, such as in a banking system,
or an event like a machine breakdown in a machine
shop. Each entity in the diagram will be represented
directly as records in a file (or table) with records (or
rows) for each entity and fields (or columns) for each
attribute.

Relationships between entities are shown as arcs
in this diagram. There are three basic types of re-
lationship: the one-to-one, the one-to-many, and the

1231

many-to-many relationship. Each of the arcs is la-
beled and the type of relationship is indicated; in this
diagram, the arrows are used. Some of the relation-
ships are conditional to imply that the relationship
may or may not exist. An example is a relationship
between advisor and student. Although this should
be a one-to-many relationship, some students may
not have an assigned advisor.

STUDENT (e ADVISOR

STUDENTH
CLASS

CLASS

Figure 3. An ER-Diagram with Intersection Entity.

The one-to-one and one-to-many relationships are
easily expressed by adding appropriate fields (attri-
butes) to the records (entities), but the many-to-
many relationship can cause problems. To deal with
the one-to-many relationship, an “intersection en-
tity” is usually inserted in the diagram. Figure 3
shows how the many-to-many relationship between
class and student can be expressed with an inter-
section entity. The intersection-entity between the
student and class entities will change the many-to-
many relationship into two one-to-many relation-
ships. The inserted entity eventually becomes a
registration file with related student-id numbers to
class-id numbers in each record. Information on the
entire system is then appropriately stored with advi-
sor information in an advisor file, student informa-
tion in a student file, class information in a class file,
and registration information, including grades and
date enrolled in a registration file.

The ER-diagramming technique is a very good
way to organize data into logical data files. Data
collection for this system must recognize this struc-
ture and store data in appropriate files. Once the
data storage design is accomplished, a relational da-
tabase and query language can be used to retrieve
and process data in numerous ways. Custom reports
and ad-hoc queries should be easy to create. In the
example of students and classes, when the data are
stored as indicated, it is easy to produce class lists

1232

showing who is enrolled in a particular class, or
produce student grade reports showing the grades for
each class that a particular student enrolled in.

6 EXAMPLES

To show how these techniques can be applied, two
typical examples of simple queueing systems and
ER-models for each are provided in Figures 4, and
S.

SERVERS
QUEUE
! QUEUE
CUSTOMER -y Y
@| o/
SERVER
ER - DIAGRAM MODEL

Figure 4. A Multiserver Queue and ER-Diagram.

Figure 4 shows a multiserver queue situation.
Here there are a number of customers, several serv-
ers, and a single queue. In the related ER-diagram,
the three basic entities are shown. Although there
are two one-to-many relationships, there are no
many-to-many relationships. Data collection for this
system should recognize the three entities identified
in the ER diagram. In this case, a small table could
be used to store information about the several servers
and most of the data would be collected in a cus-
tomer file.

QUEUES SERVERS
QUEUE
%,
%
1
CUSTOMER Y %
o [
SERVER d /
ER - DIAGRAM MODEL

Figure 5. Multiple Single Server Queues with line
jumping.

Figure 5 depicts a slightly more complex queueing
situation where there are multiple single server

Roberts

queues and line changing can occur. This situation
is similar to a grocery store. In this case, one cus-
tomer can get in a queue, but later move to another
queue. In this assumption, the queue to customer
relationship becomes a many-to-many relationship
and it is necessary to insert an intersection entity
called “customer-queue”. This customer-queue en-
tity will become a file containing information about
when a customer enters and leaves a particular
queue. This is similar to the registration file which
expresses the student-class relationship.

A most important point to remember in using this
model is that the ER-diagramming techniques pro-
vide a method for designing a complete and efficient
set of files in which to store simulation data. In ad-
dition, the files created by these methods can be used
directly by standard relational database software to
facilitate data exploration and analysis.

7 OTHER MODELING TECHNIQUES

A number of other graphical modeling techniques
are used in the design of discrete event simulations.
The state transition diagram and the flow chart are
commonly found in simulation texts. While
these techniques are useful in showing the process
logic and flow of the event processing, they say little
about data organization and collection. These dia-
grams are most helpful for programming event
driven simulation simulations.

CREATE

SEIZE
SERVER

¥

DELAY

et

SERVER

¥

TALLY

L

Figure 6. A SIMAN Model of a Multiserver
Queue.

Simulation Languages and Database Theory

The modeling languages of SIMAN, SLLAM, and
GPSS are based primarily on a graphical represen-
tation of the physical system. Tigure 6 show a sim-
plified SIMAN model of a multiserver queue. To
understand how the approach here contrasts with a
pure ER view, it is important to define the important
parts of the system using SIMAN and contrast this
with the approach shown in Figure 4. In SIMAN
terminology, the customer entering the system is an
entity. Further, in the SIMAN model, the queue is
a file where entities are stored and the servers are
described as resources. Even though it is easy to
provide the model with multiple servers, in this case
it is much more difficult to distinguish the individual
servers.

In many systems these differences are not impor-
tant. However, in this one, let’s assume we want to
model three servers at the station. One server is a
slow worker, and two are fast. Also, one of the fast
servers is constantly interrupted by phone calls. If
the servers are not treated as distinct entities with
distinguishable attributes, this model is not as easy
to construct.

There are other places where the SIMAN treat-
ment of the entities causes trouble. Consider the
grocery store checkout example where there are eight
checkout stations and all eight of the stations open
and close in response to traffic through the store. In
the SIMAN language it is not easy to have the ar-
riving customer select shortest open line by a direct
technique. Again, because the queues or stations are

not treated as entities, we can’t easily and directly
assign attributes such as the open/closed status.
SIMAN does have the built-in functionality to keep
data on queue-length and server-utilization but if
you want to go beyond what has been anticipated,
such as assign the queue status as open or closed, the
limitations are constraining.

This is not a problem unique to the SIMAN lan-
guage. Virtually all of the discrete simulation pack-
ages of this type have the same problems. The
following example illustrates the weaknesses in more
detail.

1233

8 EXAMPLE - A JOB SHOP WITH BREAK-
DOWNS

This example is provided to compare a simulation
from the point of view of the ER diagrams and
SIMAN language. Tigure 7 shows a simplified
SIMAN block diagram for a job shop operation. In
this case, there are multiple work stations which are
similar. Each station has a queue and a machine
which is used for a specified amount of time for each
job. This example is typical of the type of applica-
tion for which SIMAN is well suited. One notable
feature of this model is the use of timing entities used
to trigger the breakdown of machines; this technique
is recommended and fairly commonly used in
SIMAN (Pegden et. al. 1990).

D
=] =

BREAK

REPAIR

FIXED

Figure 7. A SIMAN Job Shop Model with Break-
downs

The timing entity is used to trigger the random
machine breakdown and repair of a machine. It is
however, important to note that the timing entity is
used only to trigger the event but is not an entity
which represents the event itself. The breakdown
event is treated separately in the ER diagram and has
a one-to-many relationship with machines or
stations. This example suggests that data collected
on machine breakdowns should be collected in a
separate file.

1234

JoB < TYPE
1
JOB -
STATION
STATION | BREAKDOWN

Figure 8. An ER-Diagram for the Job Shop Exam-
ple.

A corresponding ER diagram is shown in Figure
8. This example has a classic many-to-many re-
lationship between stations and jobs which is inter-
esting from the ER point of view. This relationship
requires an intersection entity (and file) which con-
tains information about the job-station interactions.
Assuming that each job is assigned an id-number,
and each station has a station-number, the inter-
section file could simply contain the information
about job-id-number, station-number, enter-queue-
time, start-of-processing, and the time that
processing-ended. Also, we assume that there are
several distinct job types and thus the time at each
step is functionally determined by the job type. Be-
cause this is true, normalization requires that infor-
mation about the characteristics of each job type be
stored in a separate table or file.

9 RESULTS AND CONCLUSIONS

When simulation data are stored for analysis, the ER
model is applicable. The main outcome of this ap-
proach is the specification of a data model which ef-
ficiently stores data from the simulation in a set of
files and tables which are compatible with existing
relational database systems. IHowever, using the ER
model not only helps describe an efficient way to
store data from a simulation but it also provides in-
sight into the interrelationships between players in
the simulation.

The ER theory and the related relational database
theory have been developed over several years and
have direct application for systems modeling and
simulation. One of the most obvious conclusions is
that data can be efficiently collected in a set of related
files. Allowing a simulation to build flat files for re-
lational database has value. Certain statistical and

Roberts

graphical features would obviously be facilitated by
this approach. Data that is collected in this fashion
would be easily exported into statistical analysis
software environments like SAS, which includes a
full featured relational database capability. The the-
ory of relational databases explains why data stored
in this manner is efficient and can be used to answer
to any query.

Most simulation languages were not specifically
designed to collect data in this fashion. Although
many of the interesting statistics can be calculated
without resorting to this approach, more detailed
analysis of simulation data may require storage of
large amounts of data. Simulation languages such
as SIMAN provide for data collection and statistical
analysis in the simulation model but the data col-
lection features are not ideally designed to store data
as an ER model might indicate. Analysis through
the perspective of ER modeling suggests that infor-
mation about the attributes of an entity should be
collected as whole records of information. Fortu-
nately, the latest release of SIMAN does provide a
way to write whole records into files during the sim-
ulation. ER theory provides a motivation for the
use of this feature.

Obviously, the ER modeling approach has direct
relevance to the design of simulation languages. The
theory not only has direct application to data analy-
sis but it also provides insight into the important
definition and treatment of entities in the system.

Contrasting the ER model approach to the
graphical models used in SIMAN points out some
important differences. The ER analysis shows that
some of the important players in simulation models
written with SIMAN, such as queues and resources,
might better be treated as entities. Specifically, if
treated as entities, these elements of the model could
be assigned attributes including an ID-number and
be more readily distinguished in the model and the
data analysis.

Considerations of file space may moderate direct
application of this approach. The most obvious
drawback to the idea of collecting all of the data
from a simulation into several files is the concern
about memory, storage size, and cost, plus the extra
time required for writing records to secondary stor-
age such as disk. However, the practical consider-
ations of storage requirements should not inhibit
consideration of the ER modeling and diagram
techniques. The insights gained by contrasting the

Simulation Languages and Database Theory

usual block simulation models and the ER diagrams
are worth consideration even if the data is ultimately
collected in a much more limited and traditional
manner. The dramatic improvements in cost and
performance of storage over the past few years
should at least indicate that this will all be practical
in the near future.

REFERENCES

Pritsker, A.A.B. 1984. [ntroduction to simulation
and SLAM 1I, Second Edition. New York:
Halstead Press.

Litton, Gerry M. 1987. [ntroduction to Database
Management: A Practical Approach Dubuque, I1A:
Wm. C. Brown Company.

Shannon, R.E., 1975. Systems Simulation - the art
and science Englewood Cliffs, NJ: Prentice Hall,
Inc.

Hoover, S.V. and Perry, R.F., Simulation - a
problem-solving approach, Reading, MA:
Addison-Wesley Publishing Company.

Payne, James A. 1982. [ntroduction to Simulation:
Programming Techniques and Methods of

1235

Analysis, New York, NY: McGraw-Iill Com-
pany.
Pritsker, A.A.B., 1986. [Introduction to Simulation
and SL.AM II, New York, NY: Halstead Press.
Pegden, C.D., Shannon, R.E., Sadowski, R.P., 1990.
Introduction to Simulation using SIMAN, New
York, NY: McGraw-Hill Company.

Pegden, C.D., 1987. Introduction to SIMAN State
College, PA: Systems Modeling Corporation.

SAS Institute Inc., 1985. SAS User’'s Guide: Basics,
Version 5 Edition Cary, NC: SAS Institute Inc.

Schriber, Thomas J., 1991. An Introduction to Sim-
ulation using GPSS/H New York, NY: John
Wiley and Sons.

AUTHOR BIOGRAPHY

ROBERT S. ROBERTS is an assistant professor of
Computer Information Systems at New Mexico
State University. He received his Ph.D. from Oregon
State University in 1980. Current research interests
include data communications, interconnection net-
work design, computer simulations, and curriculum
for information systems.

