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ABSTRACT

Object-oriented simulation provides a powerful and
conceptually clear methodology for discrete-event
simulation. However, planning and executing simulation
experiments using an object-oriented simulator is still a
difficult, complex task. We are investigating the use of
an interactive, opportunistic, hierarchical planner to
control the design and execution of such simulation
experiments. Our planner currently builds a hierarchical
experiment plan interactively, setting parameters for the
simulator. Examples are presented of the planner’s
graphical interface, which can also provide the simulator
with a user interface.

1 INTRODUCTION: OBJECT-ORIENTED
SIMULATION

The contributions of artificial intelligence (AI) to
simulation to date include a renewed emphasis on object-
oriented models (which Al inherited from the SIMULA
simulation language), improved interface technology,
and intelligent decision support tools. This paper
describes an initial effort to use AI planning and
interface technology to plan and control the execution of
simulation experiments in an object-oriented discrete-
event simulator.

Object-oriented simulation models a system as a set of
interacting objects (Roberts and Heim, 1988). These
objects interact by sending messages to each other when
events occur. These messages invoke locally defined
methods that implement the behaviors the object is
capable of exhibiting. The resulting encapsulation of the
data and procedures concerning a single object in a
single place simplifies the construction of complex
systems and permits a great deal of re-use of software.
Previous object-oriented discrete-event simulators using
Al technology (or ‘‘Knowledge-Based Simulators’’)
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include KBS (Fox and Reddy, 1982) (Reddy and Fox,
1982), the ROSS system at Rand (McArthur, Klahr, and
Narain, 1986), and SimulationCraft™ (Sathi et al.,
1986).

Using an object-oriented simulator can reduce or
eliminate the programming otherwise required to
produce a discrete-event simulation, if suitable libraries
of customizable objects are available. However, it is still
a challenging task to produce a complete and consistent
model; set all necessary simulation parameters to correct,
consistent, and statistically meaningful values; monitor
the execution of the simulation; and analyze its results.
It is also difficult for the user of such a system to keep
track of what has been done so far and what still needs to
be done while interactively setting up a simulation run.

We are attempting to remove these remaining hurdles
to the facile use of object-oriented simulation by using
the CORTES (Fox and Sycara, 1990), (Fox and Sycara,
1991) opportunistic planner to control the planning and
execution of simulation experiments in the
CARMEMCO (Frederking and Chase, 1990) enterprise
model.

CARMEMCO is a model enterprise, developed at
CIMDS to support research in Computer Integrated
Manufacturing (CIM). It is an object-oriented model,
built within the frame-based KnowledgeCraft™ Al
representation  language. The specific model
implemented currently is a lamp manufacturing
enterprise. The CARMEMCO simulator is an object-
oriented discrete-event simulator, implemented by
methods attached to the objects in the CARMEMCO
knowledgebase. This simulator is a spiritual descendant
of SimulationCraft™ and KBS, which were also built
within KnowledgeCraft™ and its ancestor, SRL.

Within SimulationCraft™, an attempt was made to
achieve the same goals as our project using expert
system technology. The rule-based planning approach
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implemented lacked good global control, however,
causing the system to confuse the user, presenting many
unrelated suggestions at the same time. Our hierarchical,
opportunistic planning approach, described below,
should retain flexibility while keeping the interaction
with the user focused.

Using the CORTES planner, the user interactively
instantiates the activities and parameters of special
interest, at whatever abstraction level and in any order
desired. The user then activates automatic planning,
causing the planner to produce a complete and consistent
simulation experiment plan around the user’s selections
(if possible). Eventually, the planner could serve as the
simulator’s entire user interface, setting up the model
and running, monitoring, and analyzing the simulation,
interacting with the user and continually presenting the
user with the experiment’s current status via the
planner’s graphical interface.

2 AI PLANNING

In order to understand the detailed description of our
system, some background in Al planning is necessary.
There is a long history of planning research in Al, going
back at least as far as the STRIPS (Fikes and Nilsson,
1971) system at SRI. Planners, such as ours, which
follow this traditional approach are referred to as
‘“‘classical’’, or ‘‘generative’’, planners, to distinguish
them from several more recent planning paradigms,
which we will not describe here. In a classical planner, a
plan consists of a graph of steps, representing actions
that will transform a given initial state into a goal state.
A state is simply a description of the world at a point in
time, usually as a conjunction of logical predicates or an
equivalent representation. Plans are produced by
instantiating operators. ~ An operator is simply a
parameterized abstract action, with preconditions
describing the prerequisites for the operator’s action and
postconditions describing the effects of the action. For
even relatively simple problems, searching for the
optimal sequence of operators to achieve a non-trivial
goal is difficult, due to interactions between the
preconditions and effects of different operators.

In the CARMEMCO model, the mechanism for
describing processes (actions) is the activity object.
State objects provide a mechanism for describing and
tracking the changes that activities make. Each activity
has a pre-state that describes what must be true in order
for the activity to occur and a post-state that describes
what will be true after the activity occurs. The activity-
state network representation for processes and system
states was originally developed for use in the Callisto
project management project (Sathi, Fox, and Greenberg,
1985). The activity-state representation is currently used
in several projects at CIMDS, including SAGE (Roth
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and Mattis, 1988), an intelligent human interface
manager. Since this activity-state representation was
already in use in the CARMEMCO system, it was the
obvious choice for representing our simulation
experiment plans.

In the development of planning, a number of
properties have become widely recognized as important,
such as domain independence, hierarchical planning, and
non-lincar planning. Another property that we believe is
important, opportunism, is still controversial.

2.1 Domain Independence

For a planner to be interesting from an Al point of
view, it must be domain independent. If a planner is not
domain independent, it can be very difficult to tell what
is happening, in particular, whether it succeeds in
planning because of its planning capabilities or because
of clever, domain-specific representational and program
design decisions by its human creators. Domain
independence helps guarantee that it is the planning
representations and operations that are doing the work.

2.2 Hierarchical Planning

Hierarchical planning is necessary if a planner is to
take on real-world scale problems. Solving a large
problem from beginning to end at the finest level of
detail is completely intractable, even with heuristic Al
methods. This can be remedied by first solving the
problem at a very abstract level, and then refining each
of the abstract activities into a set of activities at a finer
level of detail, repeating until a ground level is reached
in which the activities are primitive domain actions.
Hierarchical planning was introduced in the ABSTRIPS
system (Sacerdoti, 1973), and is widely used in current
planners, such as SIPE (Wilkins, 1988).

An important distinction must be made between the
hierarchical planning in ABSTRIPS and in planners such
as ours and SIPE. In ABSTRIPS, the so-called
‘‘abstraction levels’’ in the hierarchy are actually
criticality levels for domain predicates. A plan is found
involving only the most critical preconditions first. Then
preconditions at the next level of criticality are
considered, and so on, until all criticality levels have
been considered. These ‘‘abstract’’ plans, however, are
composed of single ground-level steps, albeit the most
critical ones. In truly hierarchical planning, higher-level
activities are abstractions of groups of lower-level
activities and do not necessarily appear at all in the final,
ground-level plan.

2.3 Non-linear Planning

When a planner is asked to achieve a goal state
containing a conjunction of goals, the problem of non-
linear planning arises. Early planners simply planned
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each conjunct in turn, and strung the resulting plans
together, ‘‘linearly’’. This produces badly non-optimal
solutions, and can fail on problems that are actually
soluble. The traditional solution to this is to produce
conceptually parallel solutions for the conjuncts,
represented as a partially ordered plan (Sacerdoti, 1975).
Since in reality there usually are interactions between
some of the goals, ‘‘critics’’ are used to add ordering
constraints to these plans where necessary to make them
correct. This approach to non-linearity is cumbersome
and very computationally expensive.

The CORTES planner incorporates a new approach to
non-linearity, which is inspired by the work of Veloso
(Veloso, 1989). She points out that the deep problem
with “‘linearity’” is not the linearity of the plan
representation used, but the ‘‘linearity’’ of completely
solving one goal before working on the next. This
linearity was a deliberate heuristic used in the early
planners, to reduce complexity. When *‘non-linearity’’
was introduced, it was in the guise of partially ordered
plans. Unfortunately, the partially ordered
representation makes the computation of the truth of
even one predicate very expensive.

Veloso’s approach is simply to use a linear
representation for plans, but allow the goals and
subgoals to be worked on in any order. Retaining the
much simpler linear plan representation but allowing
free selection of the next goal to consider does increase
the size of the search space. However, the linear
representation  allows conceptually simpler and
computationally  cheaper basic operations, and
consolidates all the planner’s heuristics in a single place:
the search space. Itisa ‘‘vivid’’ representation for plans
(Etherington et al., 1989), (Levesque, 1986).

2.4 Opportunistic Planning

Opportunistic planning is the ability to select an
operator for addition to a plan, and instantiate some of its
parameters, without specifying where it should go in the
plan until later. This allows the planner to ‘‘jump
around’’ from one subproblem to another, as human
beings tend to do.

In contrast, STRIPS had a fixed search strategy based
on subgoaling. When an operator was instantiated,
STRIPS would next try to achieve any unachieved
preconditions of that operator. If successful, the operator
would be ‘‘applied’’, changing the state. If the new state
did not match the goal state, a new means-ends analysis
would be done.

Although it is not universally recognized as important,
opportunism is essential for our experiment planning
application, since we allow the user to interactively
develop whatever part of the plan is of special interest,
and then have the planner fill in the rest consistently.

Frederking

Note that opportunism implies the free selection of
subgoals. It thus necessarily results in a ‘‘non-linear’’
system, in Veloso’s sense.

The concept of opportunism was first described by
Hayes-Roth and Hayes-Roth (Hayes-Roth et al., 1979),
who produced a blackboard based planning system with
a notion of opportunism. If the system heuristically
realized that some operation would be necessary, it
would be added to the plan, with ordering determined
later.

3 SIMULATION EXPERIMENT PLANNING

As we have said, the CORTES planner’s plans are
represented as activity-state networks. Operators are
abstract activities with additional slots indicating their
planning variables, preconditions, and postconditions. A
planning problem is represented as an initial state and a
goal state connected by an empty high-level plan,
representing that an as-yet-undetermined plan will
produce the not-fully-specified goal state from the initial
state. When the first operator is instantiated into a plan
activity, its pre- and post-states are created from the
initial and goal states, modified by the action the activity
represents. The initial, highly oversimplified operator
definitions for the simulation planning domain are
shown in figure 1.

As steps are added to the plan, intermediate states are
added between the steps as well, explicitly representing
both the predicates known to be true at each point in the
plan, and unsatisfied goals at that point. In non-
opportunistic, non-hierarchical applications of the
planner, each search step either adds a plan step to the
plan or instantiates an uninstantiated variable. In
hierarchical applications, possible search steps include
“‘expand step” and ‘‘pop hierarchy’’. These expand a
step in the current plan (thereby moving to a lower level)
and return to the higher-level step containing the current
step, respectively. In opportunistic applications, the
action of adding a step to a plan is separated into ‘‘create
step’” and ‘‘insert step into plan here’’ steps, thus
allowing a step and some of its parameters to be
specified without specifying its location. Mistaken
choices lead to backtracking and the use of another
alternative.

The possible steps to add to a plan are determined by
means-ends analysis (MEA) of the states in the plan.
This produces a set of partially instantiated operators,
each of which will achieve some goal that exists in a
state with no matching predicate. In later steps the other
variables in the operator are instantiated. This variable
instantiation is also driven by an appropriate version of
MEA. Taking either of these steps can add new
predicates to a state.
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;:: Define top-level simplan operators

(defop acquire-goal

:vars ((x is-a simulation-goal))
:posta ((simulation-goal x)))

(defop acquire-model

:expansion (:sub-operators (add-order))
:posta ((model-acquired)))

(defop model-validation

:prec ((model-acquired))
:posta ((model-validated)))

(defop experiment-planning
:vars ((x is-a simulation-goal))
:prec ((simulation-goal x))
:posta ((experiment-planned x)))

(defop experiment-execution
:vars ((x is-a simulation-goal))
:prec ((experiment-planned x)
(model-validated))
:posta ((experiment-executed x)))

(defop experiment-analysis
:vars ((x is-a simulation-goal))
:prec ((experiment-executed x))
:posta ((experiment-analyzed x) (experiment-done)))

;;; Define lower-level simplan operators

(defop add-order

:super-operator acquire-model

:vars ((part is-a manufactured-object)
(quantity integer)
(date integer)))

Figure 1: Definition of Simulation Planning Operators

Predicates added to a state are propagated forwards
through any operators that do not affect them to the
states on the other side, while goals are propagated
backwards. Thus, a predicate exists from the point
where it is created (by an operator or the initial state) up
to the point where it is destroyed by another operator.
Similarly, goals exist from the point at which they are
created (by a precondition of an operator or the goal
state) backwards to the point where they are fulfilled (by
the creation of a matching predicate). A difference exists
in a state when there is a goal that has no corresponding
predicate. This representation creates a complete picture
of why things are happening at any point in the plan.

This process is how we achieve ‘‘non-linearity’’, since
the planner can select any open goal to work on next;
they do not need to be subgoals of the same goal. There
is no built-in enforcement of any search strategy through
the currently unsatisfied goals.

There are currently four selectable search strategies:

bounded depth-first search, breadth-first search, user-
selection of the next step, and user-generation of the next
step. User-selection of the next step is selection from
steps suggested by MEA, while user-generation allows
the user to select the next activity to add to the plan and
its location without regard to MEA. Thus the full range
of possible actions is made available. At any point in the
search the planner can be switched from one strategy to
another. User-selection and user-generation are useful in
developing search heuristics and analyzing domain
constraints in other applications, in addition to their use
in man/machine planning systems such as this one.

We have implemented truly hierarchical planning.
High-level operators indicate a list of suboperators that
should be used to expand them. When hierarchical
expansion of a node is called for, the planner is
recursively invoked on the selected node, using its
preceding and following states as the initial state and
goal, and its suboperators as the available operators.
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(Eventually there will also have to be a mechanism for
mapping between high-level and low-level states.)
Success at a lower level results in marking the parent
activity as successfully expanded, and, if automatic
planning is in use, returning to the next higher level.
Under manual (user-generated) planning, the lower
levels can be re-entered, and the user can return to the
higher level at any time. If lower-level activities are
only partially instantiated, and the user returns to a
higher level and then invokes automatic planning, it will
return to the lower level and finish instantiating the
activities there in the course of its planning.

3.1 Interactive Planning as a User Interface
Methodology

As mentioned above, the methodology of guiding
simulation design, setup, and execution with an
interactive, hierarchical, opportunistic planner can also
provide the system with a user interface. The conceptual
motion of the user through steps in the plan, and levels in
the hierarchy, provides a natural framework for
interaction between the user and the simulation.

Hierarchical planning serves as an effective means of
varying the user interface’s focus of attention and level
of abstraction. By changing levels in the planning
hierarchy, the planner zooms in on the details of the
subtask the user is currently interested in, or zooms out
to give the user a view of the whole problem at a less
detailed level.

Although we intend to use the planner in this fashion,
and it in fact behaves as if it were currently controlling
the whole simulation, at the moment it only has control
of the system during model acquisition, because it was
inserted into a pre-existing simulation system. Although
not conceptually difficult, significant revisions to the
simulator interface will be required.

The initial version of our graphical interface is
illustrated below. As has been said, plans can be built
interactively (using user-generation), automatically
(using bounded depth-first search), or a mixture of the
two. The user interactively plans by clicking on
graphical buttons representing each of the available
operators. The instantiated operators in the current
partial plan are shown in another window. The state of
the interface after three such steps are inserted is shown
in figure 2. Open variables in the instantiated operators
can be bound by clicking on the instantiated operator in
the plan: a menu then pops up, presenting the available
choices.

When finished specifying a partial plan, the user
clicks on ‘‘Automatic Planning Search’’, which fills in
the rest of the plan using MEA. As the planner alters the
plan, the changes appear in the plan window. The set of
available operators displayed changes to show those
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currently under consideration due to MEA.

After several more steps, the ‘‘Acquire Model”
operator is added to the plan. Since this operator has a
hierarchical expansion, the planner expands it, by
instantiating an ‘‘Add Order’’ operator. Currently,
unbound numerical parameters can only be bound by
querying the user. The query for the ‘‘Quantity’’ of
parts in the order to be added to the factory model is
shown in figure 3. The final state of the planner, after
“‘popping’’ to the top level of the final plan, is shown in
figure 4.

3.2 Details of the Planner’s Operation

The MEA for variable instantiation mentioned above
solves a common problem in planners. It looks for a
variable instantiation that does not create a precondition
that does not exist in the preceding state. For example,
in the ‘‘blocks-world’> domain (a commonly-used
simple planning domain of stacking blocks), if the
planner has the goal of clearing a block off of block C, it
generates a partially-instantiated move starting on the
top of block C, without specifying what to move or
where to move it to (due to the way the operators are
encoded, it doesn’t know that it must move the block
already on block C). Our MEA for variables will
produce the block on top of C as the only choice for the
block to be moved, since any other choice would create a
precondition that does not already exist. Many planners
(including earlier versions of this one) would stupidly try
to move blocks onto C to have them available for
moving off of C! If no such ‘‘good’’ instantiation exists,
the planner reverts to the usual blind instantiation of all
possibilities.

In order to implement the predicate propagation and
difference anaylsis described above, it is necessary to do
a simple form of dependency maintenance for individual
predicates as they propagate through states. This allows
the system to tell where a predicate came from, and thus
discern the subgoaling structure of the plan. To
implement this predicate source tracking, each predicate
in each state is marked to indicate how it was introduced
into the plan. When predicates are propagated to new
states, they carry this information with them. When
MEA is carried out, subgoals are created by comparing
predicates without regard to their sources, but the
subgoals thus created still indicate their sources. In other
words, a subgoal indicates the need for a predicate
without specifying where it should come from, but does
indicate where the need for the predicate arose.
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The subgoal structure is also necessary if one is to
detect subgoal loops or multiply achieved goals, or
imitate the STRIPS search strategy. The first two are
currently done. When the goal of a step is a subgoal (to
any depth) of a step already taken to achieve the same
goal, the new step’s line of search is terminated.
(Otherwise it could loop indefinitely, without any actual
progress.) In multiply-achieved-goal elimination, if the
same goal from the same source that the current step
would achieve has already been achieved earlier in this
search path, this path is terminated. The motivation for
this is that there must be a shorter plan that only achieves
the goal once, and this path could lead to an infinite loop
similar to those in subgoal looping. We believe this is
related to the well-known technique of ‘‘goal
protection’’, where a planner will refuse to introduce an
operator that would destroy a predicate between where it
is created and where it is needed. This technique
achieves the same results by different means.

Because operators can be introduced in any order, it is
possible for the same plan to be arrived at via different
search paths. The inefficiency this could cause has been
remedied by maintaining a plan hash table. Every partial
plan produced is hashed into this table. When a new
search step is taken, the resulting plan is checked against
the hash table. If it is found, the step is abandoned, since
this partial plan is already being investigated somewhere
else in the search tree. This has saved over 60% of the
search space in deep searches.

Static preconditions can be included in our operators.
This allows an operator to require that any of its
instantiations satisfy certain predicates, without allowing
the predicates to become new goals. Our encoding of
the Tower of Hanoi makes use of this feature, since
whether a disc can be set on another disc depends on its
size, but no domain operator can alter a disc’s size.
Without static preconditions, useless subgoals would be
produced to make one disc bigger than another. This
feature works by causing the failure of a variable
instantiation if any of the static preconditions are made
false. Instantiation failures can also be caused by
predicate propagation, if a predicate propagated to a state
clashes with a postcondition of the step before that state.

Further details of the planner’s operation,
implementation, and other applications can be found
elsewhere (Frederking and Chase, 1990), (Fox and
Sycara, 1991).

4 FUTURE DEVELOPMENTS

Much further work remains to be done, in the
simulator, the planner, and the graphical interface.

The simulator is currently at a very early stage of
development. All important capabilities have been
demonstrated, but only in a very narrow ‘‘vertical slice’’
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through the system. Much development will be needed
before interesting factory simulations can be carried out.

In the current version of the planner, the user must
eventually specify a total ordering before starting depth-
first search, since the depth-first search strategy used in
automatic planning assumes totally ordered plans.
Eventually it should be possible to have the planner
create all total ordering possibilities that satisfy the
plan’s goals as search alternatives. The initial version
also allows only one ordered set of activities; that is,
there is exactly one totally ordered partial plan and a set
of unordered activities. Later versions should allow
more than one totally ordered partial plan, and should
eventually allow partially ordered partial plans as well.
The planner should also be extended to be able to reason
about numerical parameters, rather than always
prompting the user for them.

Although the graphical interface is currently quite
usable, much remains to be done before it has all the
desirable functionality. It would be very useful if the
interface graphically indicated which high-level steps
have previously been hierarchically expanded, and
which have not, for example by coloring them green and
red. Also, it would be helpful if the values of parameters
that have already been bound were visible, at least
optionally. As was said, the control of the overall
simulation needs to be implemented. Finally, the
interface currently does not handle full opportunism.
When the graphical interface is in operation, the user
must indicate the relative order of the plan steps as they
are instantiated. This limitation is only temporary,
resulting solely from the need for a new interface
module to manage the screen locations of unrelated sets
of plan steps, and to move them when their ordering is
indicated later.

S CONCLUSION

We have presented here an initial attempt to facilitate
the design and execution of simulation experiments
through the use of an interactive, opportunistic,
hierarchical planner. The planner provides an orderly
way to control the planning and execution of simulation
experiments without overly restricting the user to a pre-
established routine. In addition to planning the
simulation and keeping track of its current state, the
planner, through its graphical interface, can provide the
simulator with a natural, coherent framework for its user
interface.
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