Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

AUTOMATIC GENERATION OF A CLASS

OF

SIMULATION MODELS FROM DATABASES

R. Bruce Taylor

Industrial and Manufacturing
Engineering
Oregon State University
Corvallis, OR 97331

ABSTRACT

This paper shows the potential of using
a higher level language, such as BASIC,
to automatically generate syntactically
correct simulation models from func-
tional databases. The resulting models
may then be executed directly by the
general purpose simulation language of
choice. The procedure is primarily
developed for assembly line operations.
However, it can be readily extended to
network-based situations of the PERT-
/CPM type and MRP types. The proposed
approach is based on the observation
that although the simulation logic of
network-based models is generally sim-
ple, the structure of such models is
highly input-data dependent. In the
context of most general purpose simu-
lation languages, this dependence usu-
ally necessitates making changes in the
simulation model itself to accommodate
the new structure of the network. Such
"custom" changes impede both the ease
of maintenance and the portability of
the model. The outgrowth of pursuing
the use of higher 1level language to
generate executable simulation models
encompasses many of the goals inherent
in the simulation language work, in-
cluding little or no programming and
ease of maintenance and verification.
The power of the process comes from
having to model the problem generically
only once by using a suitable higher
level language model generator. Spe-
cific situations are then accounted for
simply by changing the input data to
the model generator.

1 INTRODUCTION

Simulation models are ultimately geared

to meet the user's needs. In this
regard, the user, who may not have
formal training in simulation, should

be able to make use of the model simply

1209

Hamdy A. Taha

Department of Industrial Engineering
University of Arkansas
Fayetteville, AR 72701

by preparing the input data in a user-
friendly format. Unfortunately, most,
if not all, general purpose simulation
languages are designed first and fore-
most to respond to the modeling needs
of the (trained) simulation analyst
rather than the simulation user. As a
result, the direct use of these lan-
guages usually requires a level of
expertise that may be beyond the capa-
bilities of the user of the model.

In response to this difficulty, a
number of approaches have been proposed
to bridge the gap between the simula-
tion analyst and the simulation user:

1. Development of a user-friendly
interface that can be used to input the
model data and to examine the output
results. In this regard, the simula-
tion model itself becomes completely
transparent to the user. An example of
this type is given by Seppanen (1990)
where an interface is used to input the
data of an assembly-line system coded
in a general purpose language. Al-
though the use of the interface is
definitely easier than dealing with the
simulation model directly, the user
must still learn some syntactical rules

created by the interface, which in
essence is equivalent to 1learning a
specialized "language." Additionally,

the size of the problem is limited by
the original size of the simulation
model.

2. Development of a specialized
simulation language that represents the
specific modeling needs of certain
situations, such as manufacturing or
communication network analyses. Some
of these languages may be graphic- or
menudriven to facilitate the process of
constructing the model. Unfortunately,
the level of modeling expertise re-
quired by these specialized languages
still is beyond the capabilities or
training of most end-users.

of the two types presented above,

1210

only the interface approach appears to
be more suited to satisfying the needs
of the end-user. However, the fact
that the user may have to learn addi-
tional syntactical rules to implement
the interface may be a disadvantage.
This paper presents a third approach
that calls for directly converting the
functional data of the situation under
consideration into a model that can be
executed by a general purpose simula-
tion language of choice. As such, the
user will be dealing with databases
with familiar formats rather than with
special formats that satisfy the syntax
of the general purpose simulation lan-
guage itself.

The proposed procedure is most suit-
ed for modeling a class of problems
that are highly input-data dependent
but with repeatable logic.

Taylor and Taha

The basic premise of the approach pre-
sented in this paper is that once the
precedence relationships at a node are
given, we can write a model generator
in a higher-level 1language (such as
BASIC or C) to generate the code that
models the node using the syntactical
rules of the general-purpose simulation
language of choice. The fact that the
logic of each node is repeatable is
ideal for developing a compact (recur-
sive) model generator that develops the
simulation model directly from the
database describing the precedence
relationships (among others) of the
different nodes.

Figure 1 summarizes the approach by
showing the relationship between the
database, the model generator and the
final simulation model.

DATABASE -

MODEL GENERATOR | -

SIMULATION MODEL

Figure 1:

2 A CLASS OF SIMULATION PROBLEMS

The analysis of assembly-line systems
in manufacturing, MRP, and PERT/CPM
type activities wusually is based on
modeling the problems as a network
(nodes and branches) that specifies the
precedence relationships governing the
operation of the system. In simula-
tion, the models representing such
network-based situations are highly
input-data dependent, in the sense that
it is usually difficult to develop a
general simulation model that accounts
for all of these situations. In ef-
fect, the structure of the simulation
model is usually changed to account for
the specific node-branch relationship
dictated by the original network. (See
[Pritsker 1986, p. 216] and [Taha 1988,
p. 343] for illustrations of PERT net-
works simulation.)

The logic of network simulation
models is usually simple; namely, ac-
counting for the input-output relation-
ship at each node. 1It is also charac-
terized by the repeatability of the
logic at each node. In essence, the
difference in the modeling of each node
basically centers around making changes
that accommodate the precedence rela-
tionships associated with each node.

Generation of the Simulation Model from Database

The discussion above indicates that
the class of problems that can be han-
dled by the proposed approach must
satisfy two conditions:

(a) Repeatability of the model compo-
nents.

(b) The modeled system involves a set
of consistent parameters that can be
ascribed to each repeated component of
the model.

These conditions apply quite well to
network-based situations for which a
varied range of applications exist as
will be demonstrated below.

3 EXAMPLE APPLICATION

The example application describes an
assembly manufacturing operation. The
example is a simplified version of a
more complete problem given in Malstrom
(1981). It involves manufacturing a
cap-cylinder assembly used for storing
chemical samples from a number of com-
ponents. Some of the components are
purchased (P) and others are made (M)
locally in the plant. The operation
involves four major component assem-
blies as summarized in Figure 2 in the
form of a part explosion diagram.

The objective of the simulation is
to generate a cost estimate of the

Simulation Models from Databases

1211

M)
TfinCap
P) M)
1.5DTfIn TfinAsm
M)
TfinTube
(P) M)
2DStnls MachCap
(P) (M) M)
Screw CapAsm CapCyl
(P)
CapNut
(P) M)
1.5DStnls MachTube

Figure 2: Part Explosion Diagram for the Example Application

final assembly CapCyl. The database
for the situation is shown in Table 1.
The organization of the data as shown
is typical of the manner in which the
user will prepare the input for the
model generator. In essence, the data
are in raw form. Notice that some of
the times are expressed as samples from
probability distributions. Such data
may also be replaced by deterministic
values if desired, or by any mathemati-
cal expression acceptable to the lan-
guage of choice.

It is equally plausible to change
the objective of the simulation to
provide other results. For example, we
may wish to estimate the throughput
time for the final assembly; or we may
wish to develop the model to account
for possible bottlenecks in the flow of
materials. Any of these objectives can
be accounted for simply by providing
the proper input and by changing the
basic structure of the model generator.

4 MODEL GENERATOR

The model generator is usually written
by the simulation analyst (rather than
by the user) using a higher level lan-
guage. The generator uses the input
data of Table 1 to generate the simula-
tion model for a specific general pur-
pose simulation language chosen by the
analyst. In our presentation, we
choose the SIMNET II simulation lan-
guage for this development because it
allows the indexing of all the model
elements (nodes, resources, statistical
variables, and switches), a quality
that is particularly suited for use
with an iterative generic model genera-
tor. The basic idea for coding the
model generator (which is written in
BASIC) is to create the purchase (P)
parts by using a SIMNET II source node.
The created transactions will then feed
into their next made (M) part node. As
the transactions traverse the branches,
they compute the desired costs.

1212

Taylor and Taha

Table 1: Database for the Example Application
Description P/M Unit $ Setup $/hr No. Preceding Quant/
Time Piece Comp. Components Assembly

"CapCyl" 88

"1.50Tfln" np 19.78

"TflnCap" e .5 "un(.11,.31)" 18 1 u1.50TfLln" .083

"TflnTube" "y .75 | "un(.33,.53)" 18 1 "1.50Tfln" .5

"TflnAsm" L 0 " " 0 2 "TflnCap" 1
"TflnTube" 1

n2pstnls" vp" 26.16

"MachCap" M 2.75 | "un(.63,.83)" 18 1 n2pstnls" 167

"Screw" npw .09

"CapNut" "p .09

"CapAsm" L 0 " " 0 3 "MachCap" 1
"Screw" 1
"CapNut" 1

"1.5DStnls" wp 14.72

"MachTube" My 2.75 | "un(.74,.94)" 18 1 "1.50Stnls" .5

“CapCyl" nMn .75 | "un(.03,.05)" 16 3 "TflnAsm" 1
“CapAsm" 1
"MachTube" 1

Notice the repetitive property of
the model alluded to earlier. Each
node represents either a purchased (P)
or a made (M) part. Both purchased and
made parts have their own specific set
of data which are consistent among all
the parts. Given the precedence rela-
tionships for each node, the simulation
analyst can then write the model gener-
ator generically to create the SIMNET
II model. As an illustration, Figure 3
provides the portion of the BASIC pro-
gram that is used to generate the main
logic of the simulation. The other
segments of the generator deal with
checking the input data and with gener-
ating the control statements of the
simulation run.

Once the generator has been verified
to produce the correct simulation code,
the user can invoke the generator to
model any similar problem simply by
changing the input data as given in
Table 1. The resulting model is guar-
anteed to be free of logical and syn-
tactical errors regardless of the stru-
cture or complexity of the model repre-

senting the problem. In this regard,
the simulation language itself is to-
tally transparent to the end-user.

Appendix A provides a listing of the
BASIC generator used to develop the
SIMNET II simulation model for the
assembly situation described above.
The resulting SIMNET II model is given
in Appendix B. An investigation of the
SIMNET II model should reveal the dif-
ficulty of attempting to change the
simulation "manually" to reflect the
change in input data. The possibility
of making logical errors could go unde-
tected because the repetitive nature of
the code and the fact that many state-
ments in the model "look alike." The
use of the model generator in this case
will alleviate this problem altogether
regardless of the size or the complexi-
ty of the original network. Indeed,
the greater the complexity of the net-
work the more useful and necessary this
procedure becomes.

Simulation Models from Databases

'Generate Node Statements
FOR i = 1 TO numcs
ss = W
i$=stre(i)
SELECT CASE pm$(i)
CASE "p»

1213

PRINT #1, USING " \ \ *s;;050lim=1:m; n$(i)

FOR n = 0 TO nbra(i) - 1

s§ =1 *b;" + n$(bra(i, n)) + ";;" + _
"a(1)="+str$(braunits(i,n))+ *cost("+i$+")*quant;"
$$=s$+1v("+STRS(bra(i, n))+")=v("+STRS(bra(i, n))+*)+a(1)%:"

GOSUB sprnt

NEXT n
CASE "Mu
PRINT #1, USING " \ \ *A:"; n$(i)
FOR n = 0 TO nbra(i) - 1
s$ = v *b;" + n$(bra(i, n)) + "/ + _

STR$(nbra(i)) + ";sw(" + i$ + ")=0N?;"
s$=s$+"a(1)=(setup("+i$+")+"+timed$(i)+"*quant)*cost("+i$+");"
s$=s$+"v("+STRS(bra(i, n)) + ")=v(" + STR$(bra(i, n))
s$=s$+")+a(1) +v(" + i$ +M);sw("+ib+ W)=QFF%:"

GOSUB sprnt
NEXT n
END SELECT

NEXT i
Figure 3:
5 OTHER APPLICATION AREAS

There are two other areas where the
procedure proposed here should prove
most effective and, indeed, highly
desirable. Both areas are in the
"gpirit" of the assembly line system
described above. The first area is the
familiar analysis of PERT activity net-
works using simulation (See [Taha (19-
88), p. 343]). Another promising area
which the authors are currently inves-
tigating deals with the evaluation of
academic curricula in colleges and
universities. A curriculum involves
the course work a student must complete
to graduate. The objective of the
simulation is to determine whether the
course offerings and schedule in an
academic department will allow a (typi-
cal) student to graduate in a certain
number of terms. We can experiment
with the impact of different schedules
and course offerings simply by changing
the input data and then using the model
generator to create the associated
simulation model. Given the large
number of academic programs in a typi-
cal college, any attempts to change the
simulation model itself manually (rath-
er than use the model generator) should
indeed be an exercise in futility.
Notice the similarity between both
the PERT and course offering areas and
the assembly line application described
above. In PERT, the source nodes are
equivalent to the purchased parts.
Similarly, in the course offering area,

BASIC Segment for Creating Simulation Model Logic

a course that has no prerequisite is
similar to a purchased part. Although
the network representing a curriculum
is complex, the database structure of
the model is straightforward and easy
to create. A simulation built directly
in a general purpose simulation 1lan-
guage would accomplish the purpose.
However, it is not easily modifiable
from year to year because of the some-
what cryptic nature of simulation pro-
grams. It also would not serve well
for boiler-plate to be used by other
institutions because of the complexity
of the network structure that would be
used to describe the model.

6 CONCLUSION

This paper has presented an approach
for generating simulation models in a
language of choice using a model gener-
ator. The idea is particularly plau-
gsible for those "high use" network-
based models which, by their very na-
ture, require making changes in the
simulation model itself each time a new
situation is investigated. Although
our demonstration has concentrated on
the use of SIMNET II general purpose
simulation language, the approach is
equally applicable with any other simu-
lation language. The main difference
will be whether or not the language
offers sufficient syntactical flexibil-
ity to allow the use of a generic model
to create the simulation statements
iteratively. Our experience shows that

1214

Taylor and Taha

the language must have the capability ments. This property is readily avail-

to accept indexed (or subscripted) able in SIMNET II.
naming of its various modeling ele-

APPENDIX A: MODEL GENERATOR FOR THE EXAMPLE APPLICATION

IR E 22 SRR R RS RS SRXRRRRRRRES SRR R RS R R RS R R R R R

'*QuickBASIC program to generate SIMNET Cost Estimation*
' x Program and Model by R.B. Taylor 3/13/91 *
T AR RE AR AR R A AA AR A KRARANAARAAARAKR AN AR AR R A AR AR AR A Ah ARk hk
'‘Array Declarations

maxpre = 10: maxnd = 80

DIM item(maxnd), n$(maxnd), pm$(maxnd), setup(maxnd)

DIM timed$(maxnd), cost(maxnd), q(maxnd)

DIM comp$(maxnd, maxpre), units(maxnd, maxpre)

DIM pre(maxnd, maxpre), bra(maxnd, maxpre), nbra(maxnd)

DIM plen(maxnd), braunits(maxnd, maxpre)

'Load Arrays from File

OPEN "capcyl.dat" FOR INPUT AS 1

INPUT #1, prjnm$, quant

i=1

WHILE NOT EOF(1)

INPUT #1, n$(i), pm$(i)

SELECT CASE pm$(i)

CASE IIPII’ llpll
'P- Itenw#,Name,P,$/unit
INPUT #1, cost(i)

CASE IIMII' Ilmll
'M- Item#,Name,M,setup time,time/piece,$/hr, #components,
' component#,units, repeat for each component
INPUT #1, cost(i),setup(i), timed$(i), q(i)
FOR g = 1 TO q(i)
INPUT #1, comp$(i, q), units(i, Q)

NEXT q
case else

END SELECT
i=1+1

WEND

numcs = i - 1

CLOSE

'Evaluate Network Structure
FOR i = 1 TO numcs
IF pm$(i) = "M" THEN
FOR q = 1 TO q(i)
IF comp$(i, q) > "" THEN

WHILE n$(p) <> comp$(i, q) AND pre(i, q) <= numcs
p=p+1
WEND
IF p > numcs THEN
PRINT "Component not found “; comp$(i, q): END
END IF
pre(i, q) = p
IF nbra(p) = maxpre THEN
PRINT "Exceeds max pre... at "; n$(p): END
END IF
bra(p, nbra(p)) = i
braunits(p, nbra(p)) = units(i, q)
nbra(p) = nbra(p) + 1
plen(p) = plen(p) + units(i, q)
END IF
NEXT q
END IF
NEXT i

Simulation Models from Databases 1215

'Generate Control Statements

OPEN "capcyl.snt" FOR OUTPUT AS 1

PRINT #1, “$PROJECT;"; prjnm$; ";"; DATES$; “;TAYLOR:"

PRINT #1, “$SDIMENSION: ENTITY("; maxnd; "),A(2),v("; maxnd; "),";
“cost(";maxnd; "), setup(";maxnd;"):" -

PRINT #1, "SVARIABLES: Total;RUN.END;V("; numcs; "):"

PRINT #1, “SSWITCHES: SW(1-"; STR$(numcs); ");ON:"

PRINT #1, " $BEGIN:"

'‘Generate Node Statements
FOR i = 1 TO numcs

Ss = un
i$=str$(i)
SELECT CASE pm$(i)
CASE "pv
PRINT #1, USING " \ \ *s;;ii;lim=1:m; n$(i)
FOR n = 0 TO nbra(i) - 1
s$ = *b;" + n$(bra(i, n)) + ";;" +
"a(1)="+str$(braunits(i,n))+"*cost("+i$+")*quant;“_
s$=s$+"Vv("+STRS(bra(i, n))+")=v("+STR$(bra(i, n))+")+a(1)%:"
GOSUB sprnt
NEXT n
CASE '"M"
PRINT #1, USING " \ \ *A:"; n$(i)
FOR n = 0 TO nbra(i) - 1
S$ =n *b;" + ns(bra(i’ n)) + II/II + _
STRE(nbra(i)) + ";sw(" + i$ + ")=0N?2;"
s$=s$+"a(1)=(setup("+i$+")+"+timed$(i)+"*quant)*cost("+i$+");"
s$=s$+"v("+STRS(bra(i, n)) + ")=v(" + STR$(bra(i, n))
s$=s$+")+a(1) +v(" + i$ +");sw("+i%+ ")=0FF%:"
GOSUB sprnt
NEXT n
END SELECT
NEXT i
PRINT #1, © *b; TERM; ; SIM=STOP%: "

PRINT #1, “SEND:"

s$= "$ARRAYS: cost; 1-1/ns/"

for i=1 to numcs
s$=sP+stre(cost(i))+";"

next i

mid$(s$, len(s$))=":"

gosub sprnt

s$=" setup;1-1/ns/"

for i=1 to numcs
s$=s$+stré(setup(i))+";"

next i

mid$(s$, len(s$))=":"

gosub sprnt

print #1, “$CONSTANTS: 1-1/quant=";quant;":"

PRINT #1, “$STOP:"

CLOSE
END
sprnt: 'Line length must be less than 72
frstlin = -1
WHILE LEN(s$) > 70
s =70
WHILE MID$(s$, s, 1) <> ";" and s>30
s=s -1
WEND
PRINT #1, LEFT$(s$, s)
s = ¢ "+ MID$(s$, s + 1)
WEND

IF LEN(s$) > O THEN PRINT #1, s$: s$ = ""
RETURN

1216

APPENDIX B:

Taylor and Taha

SIMNET II SIMULATION MODEL FOR THE EXAMPLE APPLICATION

$PROJECT; CAPCYL;03-15-1991; TAYLOR:
SDIMENSION: ENTITY(80),A(2),v(80),cost(80),setup(80): SVARIABLES: Total;RUN.END;V(12):
$SWITCHES: SW(1- 12);0N:

$BEGIN:
1.50Tfln

TflnCap

TflnTube

TflnAsm

20Stnls

MachCap

Screw
CapNut

CapAsm

1.5DStnls

MachTube

CapCyl

$END:
$ARRAYS:

cost; 1-1/ns/ 19.78; 18; 18; 0; 26.16; 18; .09; .09; O;
setup;1-1/ns/ 0; .5; .75; 0; 0; 2.75; 0; 0; 0; 0; 2.75; .75:

*b; TflnCap;;a(1)= .083*cost(1)*quant;v(2)=v(2)+a(1)%:
*b; TflnTube;;a(1)= .5*cost(1)*quant;v(3)=v(3)+a(1)%:
*A:
*b; TflnAsm/ 1;sw(2)=0N?;
a(1)=(setup(2)+UN(.11,.31)*quant)*cost(2);
v(4)=v(4)+a(1) +v(2);sw(2)=0FF%:
*A:
*bh; TflnAsm/ 1;sw(3)=0N?;
a(1)=(setup(3)+UN(.33,.53)*quant)*cost(3);
v(4)=v(4)+a(1) +v(3);sw(3)=0FF%:
*A:
*b;CapCyl/ 1;sw(4)=ON?;
a(1)=(setup(4)+0*quant)*cost(4);
v 12)=v(12)+a(1) +v(4);sw(&4)=OFF%:
*s;ri0Lim=1:
*b;MachCap; ;a(1)= .167*cost(5)*quant;v(6)=v(6)+a(1)%:
*A:
*b;CapAsm/ 1;sw(6)=0N?;
a(1)=(setup(6)+UN(.63,.83)*quant)*cost(6);
v(9=v(9+a(1) +v(6);sw(6)=0FF%:
*s;5:Lim=1:
*b;CapAsm; ;a(1)= 1*cost(7)*quant;v(9)=v(9)+a(1)%:
*grs0slim=1:
*b;CapAsm; ;a(1)= 1*cost(8)*quant;v(9)=v(9)+a(1)%:
*A.

*b;CapCyl/ 1;sw(9)=ON?;
a(1)=(setup(9)+0*quant)*cost(9);
v(12)=v(12)+a(1) +v(9);sw(9)=0FF%:
*s;500lim=1:
*b;MachTube;;a(1)= .5*cost(10)*quant;
v(11)=v(11)+a(1)%:
*A:
*b;CapCyl/ 1;sw(11)=O0N?;
a(1)=(setup(11)+UN(.74,.94)*quant)*cost(11);
v(12)=v(12)+a(1) +v(11);sw(11)=0FF%:
*A:
*b; TERM; ; SIM=STOP%:

$CONSTANTS: 1-1/quant= 88 :

14.72; 18; 16:

$STOP:
REFERENCES Seppanen, M. S. (1990), "ALSS II: The
Advanced Assembly Line System Simula-
Crooks, J.G. (1987), "Generators, Ge- tor," Proceedings of the 1990 Winter

neric Models, and Methodology" Journal
of the Operational Research Society,
Vol. 38,
Malstrom, E.M. (1981), What Every Engi-
neer Should Know About Manufacturing

Cost Estimating, Dekker, New York, NY. Taha, H.
Pritsker A. B. (1986), Introduction to SIMNET II, SimTec, Inc., Arkansas.
Simulation and SLAM II, Wiley, New

York.

Simulation Conference, O. Balci, R.
Sadowski, and R. Nance (eds), SCS, San
No. 8, pp. 765-768 Diego, California (pp. 625-631).
Taha, H. A. (1988), Simulation Modeling
and SIMNET, Prentice-Hall, New Jersey.

A. (1990), Simulation with

Simulation Models from Databases

AUTHOR BIOGRAPHIES

R. BRUCE TAYLOR is an Assistant Profes-
sor of Industrial and Manufacturing
Engineering at Oregon State University.
He holds a B.S. in Systems Engineering
from UCLA and an M.S.E. in Computer
Science Engineering and a Ph.D. in
Industrial Engineering from the Univer-
sity of Arkansas. Before entering
academics, he did systems control work
in the US Air Force and was a computer
specialist with the US Forestry Ser-
vice. He continues to work with the
USFS on field use of hand-held comput-
ers. His current teaching and research
areas are simulation and computer inte-
grated manufacturing. He is a senior
member of Institute of Industrial Engi-
neers (IIE) and is also a member of
American Society for Engineering Educa-
tion (ASEE).

Telephone (503) 737-6073

FAX (503) 737-5241

e-mail Taylorrb@conan.ie.orst.edu

1217

HAMDY A. TAHA is Professor of Industri-
al Engineering at the University of
Arkansas and President of SimTec, Inc.
He holds a B.S. degree in Electrical
Engineering (Alexandria University,
1958), M.S. degree in Industrial Engi-
neering (Stanford University, 1961),
and Ph.D. degree in Industrial Engi-
neering (Arizona State University,
1964). He is the developer of the
SIMNET simulation language and the
author of four books in operations
research and simulation. His most
recent book is Simulation Modeling and
SIMNET, Prentice-Hall, 1988. His con-
sulting experience is focused on the
application of operations research and
simulation to the oil industry. He has
worked on consulting projects in the
U.S., Mexico, and the Middle East.
Telephone (501) 575-6031

FAX (501) 575-4346

e-mail HT27009@UAFSYSB.uark.edu

