Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

HEIGHT-FIELD FLUIDS FOR COMPUTER GRAPHICS

Michael Kass

Advanced Technology Group
Apple Computer, Inc.
20705 Valley Green Drive
Cupertino, CA 95014

ABSTRACT

We present a new method for animating water based on a
simple, rapid and stable solution of a set of partial differential
equations resulting from an approximation to the shallow
water equations. The approximation gives rise to a version of
the wave equation on a height-field where the wave velocity is
proportional to the square root of the depth of the water. The
resulting wave equation is then solved with an alternating-
direction implicit method on a uniform finite-difference grid.
The computational work required for an iteration consists
mainly of solving a simple tridiagonal linear system for each
row and column of the height field. A single iteration per
frame suffices in most cases for convincing animation.

Like previous computer-graphics models of wave motion,
the new method can generate the effects of wave refraction
with depth. Unlike previous models, it also handles wave
reflections, net transport of water and boundary conditions
with changing topology. As a consequence, the model is
suitable for animating phenomena such as flowing rivers,
raindrops hitting surfaces and waves in a fish tank as well as
the classic phenomenon of waves lapping on a beach. The
height-field representation prevents it from easily simulating
phenomena such as breaking waves, except perhaps in
combination with particle-based fluid models.

1 INTRODUCTION

The problem of realistically modeling scenes containing
water has captured the attention of a number of computer-
graphics researchers in
[Fournier and Reeves 1986; Ts'o and Barsky 1987; Masten et al. 1987].
The omni-presence of water as well as the complexities and
subtleties of its motion have made it an attractive subject of
study. Yet existing computer-graphics models of water
motion adequately cover only a very small range of interesting
water phenomena. Among other effects, they fail to account
for wave reflections, net transport of water and boundary
conditions with changing topology. A computationally
inexpensive method of simulating these phenomena will be
presented here. Based on solving a partial-differential
equation on the surface of a height-field, the method is easy to
implement and very stable. The approximations involved may
not be suitable for high-precision engineering applications, but
they produce pleasing animation with little effort.

Many popular methods for modeling water surfaces work
well for producing still images, but are unsuitable for
animation because they do not include realistic models for the
evolution of the surface over time. Examples of these
techniques include stochastic subdivision [Lewis 1987) and
Fourier synthesis [Mastenetal. 1987). Other techniques work
well only in large bodies of water away from boundaries

recent years [Max 1981; Peachy 1986;

1194

[Perlin 1985; Max 1981; Schachter 1980]. Recently, the realism of
water modeling in computer graphics was substantially
improved by three papers [Peachy 1986; Fournier and Reeves 1986;
[Ts'o and Barsky 1987] that took into account refraction due to
changing wave velocity with depth. In each case, specialized
methods based on tracking individual waves or wave-trains
were used to avoid the need to directly solve a differential
equation. These papers deal adequately with waves hitting a
beach, but they leave a wide range of water phenomena
unexplored. None of the papers includes simulations of re-
flected waves. In addition, the underlying model in each case
is that particles of water move in circular or ellipsoidal orbits
around their initial positions, so there can be no net transport
or flow. Finally, none of the papers considers situations in
which the boundary conditions change through time altering
the topology of the water -- for example a wave pushing water
up over an obstacle and down the other side to create a puddle.
It appears to be very difficult to deal with these phenomena
efficiently by tracing waves.

Two alternatives to tracing the propagation of waves or
wave-trains exist. One is to simulate the fluid by the
interaction of a large number of particles [Miller and Pearce 1989;
[Sims 1988], and the other is to directly solve a partial
differential equation describing the fluid dynamics
[Patel&Dvinsky 1987; Kallinderis&Baron 1989; Miyata&Nishimura 1985).

Both have been used by hydro-dynamicists to create
iterative simulations of fluid flow. The problem is that a truly
accurate simulation of fluid mechanics usually requires
computing the motion throughout a volume. This means that
the amount of computation per iteration grows at least as the
cube of the resolution. If there are linear systems to be solved
at every iteration, the computational cost can grow even faster.
In addition, the number of iterations required may grow as the
resolution is increased. As a consequence, accurate simulation
of fluid mechanics is typically reserved for vectorized
supercomputers or very highly parallel machines.

For the purposes of animation, accuracy is much less im-
portant than stability and speed. An animator using tech-
niques of physical simulation will typically have to
experiment with a number of different conditions of a simula-
tion before achieving satisfying motion. If the experiments
take too much time or if the numerical methods become
unstable, the process can become excruciating.

Here, we examine the differential equation approach with
the goal of constructing the fastest stable simulation which
yields a wide range of convincing motion. We begin by
considering a very simplified subset of water flow where the
water surface can be represented as a height field and the
motion is uniform through a vertical column. This subset of
water flow is representative of a variety of non-turbulent
shallow-water phenomena. Under these conditions, we can
approximate the equations of motion of the water in terms of a
grid of points on a height-field. The amount of computation

Height-Field Fluids

n-3 hn-Z n-1

Fig. 1: Discrete two-dimensional height-field representation of the
water surface A, the ground bottom b, and the horizontal water veloc-

ity u
/

can then be proportional to the number of samples on the
surface of the water which varies as the square of the
resolution instead of the cube.

Integration of the partial-differential equations is done
withan alternating-direction implicit technique [Press et al. 1986].
The result is a very stable integration scheme which is also
very fast. Stability derives from the use of an implicit integra-
tion scheme; speed derives from the tridiagonal structure of
the required linear systems which are solvable in linear time.
Because of the stability, the time-step of the solution can be
made equal to the frame time of the animation in most cases.

2 SHALLOW WATER EQUATIONS

In lieu of simulating the full Navier-Stokes equations of
fluid flow, we begin with a vastly simplified set of equations
which has been widely used for shallow water (Le Mehaute 1976;
[Crapper 1984; Stoker 1957). The simplification arises from three
approximations. The first approximation is that the water sur-
face is a height field. This, of course, has some obvious limi-
tations. The water cannot splash and waves cannot break.
However, so long as the forces on the water are sufficiently
gentle, the height-field assumption will not introduce error.
The second assumption is that the vertical component of the
velocity of the water particles can be ignored. Once again, the
limitations of this assumption are fairly clear. If a disturbance
creates very steep waves on the water surface, the model will
cease to be accurate. The third assumption is that the horizon-
tal component of the velocity of the water in a vertical column
is approximately constant. If there is turbulent flow or unusu-
ally high friction on the bottom, this assumption will break
down. Nonetheless, the experience of hydrodynamicists sug-
gests that this is a very useful approximation to phenomena
ranging from the effect of a single rain drop to the refraction
of waves in a sea port.

For simplicity, we begin with a height-field curve in two
dimensions. Later, the same techniques will be extended to a
height-field surface in three dimensions. Let z = h(x) be the
height of the water surface and let z = b(x) be the height of the
ground. If d(x)=h(x)-b(x) is the water depth and u(x) is the
horizontal velocity of a vertical column of water, the shallow
water equations that follow from the above
assumptions(Crapper 1984; Stoker 1957] can be written as follows:

1195
i+ui+ ﬂ—0

a Yo Sk)
od 9

E+a(ud)-—0 (2)

where g is the gravitational acceleration. Eq. 1 expresses
Newton’s law F=ma while eq. 2 expresses the constraint of
volume conservation. Note that even with the above three
simplifying assumptions, the resulting differential equations
are non-linear. A further simplification which is often used is
to ignore the second term in eq. 1 and linearize around a con-
stant value of h. This will be reasonable if the fluid velocity is
small and the depth is slowly varying. The resulting equations
are then:

du oh

PR ¢ 3
oh ou
ERE " (4

If we differentiate eq. 3 with respect to x, then differentiate
eq. 4 with respect to ¢ and finally substitute for the cross-deriv-
atives, we end up with

% _ 9%
ar)

which is the one-dimensional wave equation with wave

velocity /gd. While this degree of simplification is suspect
for many engineering purposes, our experience suggests that

the resulting equations are quite adequate for a wide range of
animation applications.

3 DISCRETIZATION

In order to solve eq. 5, we need to construct a discrete rep-
resentation of the continuous partial-differential equation.
There are two established techniques for doing so. The first is
the finite-difference technique where the continuous functions
are represented by a collection of samples. The second is the
finite-element technique where the continuous functions are
represented as the sum of a collection of continuous basis
functions. Here, the finite-difference technique works particu-
larly well because of the simple height-field representation.
The resulting algorithm is very easy to implement and the
linear systems involved are tridiagonal.

Figure 1 shows the discrete representation of the height-
field in two dimensions. Note that the samples for « lie half-
way in between the samples of 4. After experimenting with a
number of finite-difference approximations to equations 3 and
4, the most stable version we have found is

oh, (di-l +di) (d.""dm)

= T | T oA % T | T M

or 2Ax 2Ax (6)
% _ "g(hm - hi)

o Ax ()

where Ax is the separation of the samples along the x direc-
tion. Putting the above two equations together, we get

1196

d’h, _ (di+d, (h =)

PR 2(Ax)?)T e
di + di+l)

+ U h‘i- - hi

which is a discrete approximation to eq. 5.

4 INTEGRATION

The finite differences convert the partial-differential equa-
tion into an ordinary differential equation involving 4 and its
time derivatives. The remaining problem is to solve the
ordinary differential equation. While there are a number of
possible choices of solution method, the wave equation is a
notoriously bad example for explicit differential equation
methods such as Euler’s method or Runge-Kutta integration.
As the wave velocity approaches one sample per iteration,
explicit methods tend to diverge very rapidly. Since the wave
speed is proportional to the square-root of the depth, an
ordinary explicit method would have to use a time-step appro-
priate for the deepest water in the model. Implicit methods,
on the other hand, do not suffer from these difficulties.

For simplicity, we use a first-order implicit method which
appears to be perfectly adequate. Let h(n) to denote 4 at the
nth iteration and let dots denote differentiation with time.
Then the first-order implicit equations can be written

h(n) — h(n-1)

=4
Ar (n) 9
h(n) — h(n -1) = i
At (10

Note that the right-hand sides of these equations are evaluated
at time n which corresponds to the end of the iteration rather
than time n-1 which corresponds to the beginning of the
iteration. This is what makes the iteration implicit and stable.
Rearranging the above, we get

h(n) = h(n—=1)+ Ath(n—-1)
+ (At)*h(n) (11

h(n) = 2h(n = 1) = h(n - 2) + (AD*h(n) (12)

hi(n)=2h(n-1) = h(n-2)

_ 2 di—|+di _
g(Ar) TL\:)Z (hi(n) = h,_(n))

M)(l’m(") = hi(n))

+ g At 2

We are still left with non-linear equations because d depends
on h. In order to solve these equations rapidly, we need a final
linearization. Once again there are several possible choices,
but a particularly well-behaved linearization is to regard d as a
constant during the iteration. This means that the wave veloc-
ity is fixed as a function of x. It limits the non-linearities to
changing the wave velocities in-between iterations and virtual-
ly ensures that the iteration will not diverge. With this linear-
ization the next value of 4 can be calculated from previous

Kass
values with the symmetric tridiagonal linear system
Ah(n)=2h{n-1)-h(n-2) (14)
where the matrix A is given by
& fo
fO el f]
i e
A=
s fas
fo-s €z faa
foz € (15)

and the elements of A are as follows:

d0+d,)

_ 2
eo =1+ g(Ar) (Z(Ax)z

=1+ g(Ar)? d"“+2d"+d"*') (O<i<n-1)
e, = 4 2(Ax)2
d,,+d,_
en-1=1+8(A1)2(2zT)2|)
f - _ (N)z(di+di+l)
T8 2(Ax)* (16)

Note that right-hand side of eq. 14 can be regarded as an
extrapolation of the previous motion of the fluid surface.
Some interesting effects are possible by slightly changing the
extrapolation. In particular, if the equation is changed to be

Ah(n) = h(n-1)

+ (1= 1)(h(n—-1) = h(n-2))
¢ 17

then 7 introduces some damping in the extrapolation. If
7 = 0, then it reduces to eq. 14, but if T is between zero and
one, it will make the waves damp out over time. The visual
effect is that of a viscous fluid.

There is one further subtlety of importance in the two-di-
mensional case. Even though eq. 14 was derived from eq. 6
which specifies conservation of volume, there is no guarantee
that the results of the iteration will precisely conserve volume.
The primary cause of departures from volume-conserving be-
havior is that the iteration may leave h, < b, for some index

i. To compensate for this negative volume, the iteration will
create excess positive volume elsewhere. While the effect is
small, it can accumulate over time and create substantial drift.
If the entire surface acquires a small net upwards velocity it
will very quickly create noticeable amounts of water. To
combat this effect, the following simple projection appears to
be adequate. After each iteration, find the connected pieces of
the fluid. This can be done by scanning the 4 and b vectors in

order and testing whether h;, < b,. For each connected piece

Height-Field Fluids

of the fluid, calculate the old volume and the new volume. If
the new volume is different, distribute the difference uniform-
ly over the samples in the connected region.

We can now state the entire algorithm for the two-dimen-
sional case in some detail:

Begin by specifying A(0), h(1) and b.
Loop for j starting at 2 incrementing by one.
If there are net sources or sinks of water, add or subtract
the amounts from the current and last values of h.
Calculate dfrom h(-1) and b. It h, < b, thend; = 0.
Calculate the new value of h from h(j-1) and h(j-2)
using eq. 14.
Adjust the new value of hto conserve volume as above.
If h; < b, for some index i, set h,(j)

andh,(j—1)tob, — €.
The resulting value of his h(j).

While there are a number of possible refinements, this is the
basic version of the two-dimensional case. It can be
implemented in one to two pages of very efficient,
straightforward C code.

5 THREE DIMENSIONS

Height fields in two dimensions are interesting, but
moving to three dimensions opens up a much wider range of
possibilities. Fortunately, the three-dimensional equations can
be approximated by a series of two-dimensional equations, so
the complexity does not increase radically. The basic wave
equation for water in three dimensions is the same as the two-
dimensional case except that the second derivative of 4 with
respect to x is replaced with the Laplacian.

a’h ah d°'h
Eol g"(? x] = sV

(18)

In order to solve the equations in three dimensions, we
rely on the alternating-direction method(Press et al. 1986]. The
basic idea of the method is to take eq. 18 and split the right-
hand side of it into the sum of two terms, one of which is
independent of y and the other of which is independent of x.

We then divide the iteration into two sub-iterations. In the
first sub-iteration, we replace the right-hand side of eq. 18
with the first term, and in the second sub-iteration, we replace
the right-hand side of eq. 18 with the second term. More spe-
cifically, in the first sub-iteration, we solve the equation

2 2
d*h dc?h

ar St (19

and in the second sub-iteration, we solve the equation

xt Sy)

The advantage of this technique is that the required linear sys-
tems remain tridiagonal so the computational cost per itera-
tions is proportional to the number of samples on the surface.
The resulting implementation remains very simple. For the
first sub-iteration, we compute the update as before on each
row of the height-field. For the second sub-iteration, we do
the same for each column in the height-field. While artifacts
can potentially arise from the favored directions, our experi-
ence with the alternating-direction formulation of these equa-
tions is very favorable. More so than in two-dimensions, it is

1197

important to be careful with the details of the volume conser-
vation. Errors manifest themselves as line artifacts along the x
ory axes.

CONCLUSION

There is a long history of people using differential equa-
tions to analyze and simulate fluid flow for engineering pur-
poses. Here we have attempted to make use of that work to
derive a simplified model that is well suited to the demands of
animation. The model is stable, rapid and easy to program.
The computation time is linear in the number of samples of
the height field, making high-resolution simulations possible.
In the three-dimensional case, the computation for each row
and each column is independent, so it can be easily parallel-
ized. Unlike models which rely on tracking individual waves
or wave-trains, reflected waves, changing boundaries and net
flow can be handled in a simple manner. As a consequence,
this model extends the range of water effects which can be an-
imated in a reasonable time.

By using a number of approximations it is possible to
render convincing caustic shading effects at little computa-
tional cost. A wetness map adds to the realism of water flow-
ing over sand. When combined with the fluid dynamics
model, the results are encouragingly realistic.

ACKNOWLEDGEMENTS

Thanks to Gavin Miller for stimulating discussions and
help in rendering images of the fluids. Thanks to the ATG
graphics group for discussions and helpful advice.

REFERENCES

Crapper 1984 Crapper, G. 1984. [ntroduction to Water
Waves, John Wiley & Sons, New York.

Fournier and Reeves 1986 Fournier, A. and W. Reeves.
1986. “A Simple Model of Ocean Waves,” Proceedings
of SIGGRAPH 86: 75-84.

Kallinderis&Baron 1989 Kallinderis, Y. and J. Baron.
1989. “Adaptation methods for a new Navier-Stokes al-
gorithm,” ATAA Journal, 27, 1: 37-43.

Le Mehaute 1976 ~ Le Mehaute, B. 1976. An Introduction
to Hydrodynamics and Water Waves, Springer-Verlag,
New York.

Lewis 1987 Lewis, J. 1987. “Generalized Stochastic Sub-
division,” ACM Transactions on Graphics, 6, 3: 167-
190.

Masten et al. 1987 Masten, G., P. Watterberg, and 1.
Mareda. 1987. “Fourier Synthesis of Ocean Scenes,”
IEEE Computer Graphics and Application, 7, 3: 16-23.

Masten et al. 1987 Masten, G., P. Watterberg, and 1.
Mareda. 1987. “Fourier Synthesis of Ocean Scenes,”
IEEE Computer Graphics and Application, 7, 3: 16-23.

Max 1981 Max, N. 1981. “Vectorized procedural models
for natural terrain: Waves and islands in the sunset,”
Proceedings of SIGGRAPH 81: 317-324.

Miller and Pearce 1989 Miller, G. and A. Pearce. 1989.
“Globular Dynamics: A connected particle system for

1198

animating viscous fluids,” Computer Graphics 13,3:
305-309.

Miyata&Nishimura 1985 Miyata, H. and S. Nishimura.
1985. “Finite difference simulation of nonlinear waves
generated by ships of arbitrary three-dimensional config-
uration,” Journal of Computational Physics 60: 391-436.

Patel&Dvinsky 1987 Patel, B. and A. Dvinsky. 1987 “The
solution of the reynolds averaged Navier-Stokes equa-
tions in general curvilinear coordinates and its applica-
tion to vehicular aerodynamics,” in Computers in De-
sign, Manufacture and Operation of Automobiles, Mur-
thy and Brebbia, Eds., Springer Verlag, Berlin.

Peachy 1986 Peachy, D. 1986. “Modeling Waves and
Surf,” Proceedings of SIGGRAPH 86: 65-74.

Perlin 1985 Perlin, K. 1985. “An Image Synthesizer,”
Proceedings of SIGGRAPH 85: 287-296.

Pressetal. 1986 Press, W., B. Flannery, S. Teukolsky, and
W. Vetterling. 1986. Numerical Recipes: The Art of
Scientific Computing, Cambridge University Press,
Cambridge.

Schachter 1980 Schachter, B. 1980. “Long crested wave

models,” Computer Graphics and Image Processing 12:
187-201.

Sims 1988 Sims, C. 1988. “Particle Dreams,”[Video]
SIGGRAPH Video Review 38/39, ACM SIGGRAPH,
New York, segment 42.

Stoker 1957 Stoker, J. 1957. Water Waves, Interscience,
New York.

Ts'o and Barsky 1987 Ts’o, P. and B. Barsky. 1987. “Mod-
eling and Rendering Waves,” ACM Transactions on
Graphics, 6, 3: 191-214.

Kass

AUTHOR BIOGRAPHY

MICHAEL KASS is a staff research scientist with the
Advanced Technology Group of Apple Computer. He re-
ceived a B.A. in Artificial Intelligence from Princeton
University, an M.S. in Computer Science from M.LT.,
and a P.h.D. in Electrical Engineering from Stanford Uni-
versity. His research focus is on the use of physical sim-
ulation for computer graphics.

