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ABSTRACT

We present a framework for modelling and simulat-
ing objects with physical attributes. Rather than at-
taching physical properties to geometric shapes, we
directly design and manipulate objects with intrinsic
dynamic properties such as stiffness, mass, angular
momentum, Flexible and rigid bodies can interact in
the same simulated physical environment, responding
to collisions, fluid velocity fields, friction and gravity.

A modeller and simulator organized along these
principles has been implemented and used in com-
puter animation. The results obtained with these
systems are presented.

1 INTRODUCTION

Physically based animation is a new area in the field
of computer graphics. Using physics to determine
the motion of objects adds realistic effects to anima-
tions. Animations are automatically created from an
initial set of physical properties and models. Physical
laws are used to produce animations that are visually
appealing and communicate information about how
different models interact in a simulated environment.

Introducing physics as a way to generate motion
has produced a variety of effects. Realistic motion of
rigid bodies has been used by Hahn (1988) and Barzel
and Barr (1988). The motion of flexible objects has
been used by Terzopoulos et al. (1987), Miller (1988),
and Platt and Barr (1988). The motion of rigid and
flexible objects can also be simulated together as in
Terzopoulos and Witkin (1988). Fracture of objects
has been studied by Terzopoulos and Fleischer (1988)
and Norton et al. (1990). Fluid flows have been stud-
ied using particles systems as in Reeves (1983) and
Sims (1990). Wind field represented by fluid flow
techniques is used by Wejchert and Haumann (1991).

Most of the referenced methods above use a specific
mathematical model to produce a specific physical ef-
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fect. Our goal is to create an animation system for
experimenting with different physically based anima-
tion techniques. We currently have a system that
has allowed us to model a breaking teapot, a flexi-
ble swing affected by wind, and leaves which float or
move in wind velocity fields (Haumann et al, 1991).

In our system objects are represented in a topologi-
cal hierarchy associated with points, edges, faces and
cells. This structure permits simulation of objects
with 0, 1, 2, and 3 dimensional components. Op-
erators are defined that permit topological modifica-
tion of the structures; e.g. aggregate objects are built
by physically attaching subcomponents, and solid ob-
jects are disintegrated during fracture. Mass and ve-
locity are associated with points, spring forces are
transmitted through edges, and wind forces are ap-
plied to faces. Cells are required to represent the in-
tegrity of solid structures and for computing bound-
ary operators.

2 ANIMATION SYSTEM

Many components are needed in a system for com-
puter animation. At a minimum we need a compo-
nent to create or model the objects to be animated, a
component to animate those objects and a component
to create an image or render a frame in the anima-
tion. The modelling and animating components will
differ among animation systems depending on the al-
gorithms used for animating objects. We choose to
animate our models using forward simulation of phys-
ical environments. Refer to figure 1 for a layout of the
components of our system and for the data flow be-
tween components.

Before the components of this system are discussed
it is important to talk about the models that are to
be created and acted upon. We refer to three types
of models: a geometric model, a physical model and a
surface model. A geometric model is simply a math-
ematical description of an object. The mathematical
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Figure 1: An Animation System for physically-based modelling

description could be surface definitions, networks of
vertices and edges, sets of volumetric primitives as
in the case of CSG, or any other geometric entity.
A physical model is the combination of a geometric
model with physical properties or attributes of an ob-
ject at an instant of time. Each physical attribute is
usually coupled with a specific geometric primitive.
Physical models are input to a simulated environment
where they react with forces and other physical en-
tities. A surface model is a subset of the geometric
model. It is a representation of the external surfaces
of an object. In our system this is represented as a
list of polygons. The surface model is important for
visualizing the objects that are being simulated.

The first component needed is the modeller. The
modeller is separated into two components: a geomet-
ric modeller and a physical attribute modeller. The
geometric modeller uses mathematical equations to
define the geometry which creates a topological model
of an object. For three dimensional objects topology
should describe the internal and external structure of
an object. The physical attribute modeller takes a
geometric model and adds physical properties or at-
tributes to geometric primitives to create a physical
model.

The next component in the system is the simula-
tor. The simulator is a program that models an en-

vironment for physical objects to interact. Forward
simulations create snapshots of the environment and
the objects inside the environment at an instant of
time. The collection of these snapshots results in an
animation sequence based on physical events.

The environment has forces such as gravity, friction
and wind fields. Physical models interact with each
other and collision forces are applied to keep objects
from passing through each other. The objects in this
environment range from flexible objects which can
bounce to stiffer objects which can break.

A different physical environment results from each
run of the simulator. A physical model from one in-
stant of time in one environment can be introduced
at any time instant in another environment. Physical
models can be put together in the same environment
or simulation so that they are allowed to interact with
each other, or they can be simulated in separate en-
vironments and be combined later for rendering.

The last component mentioned for an animation
system was a renderer. High quality rendering is
very time consuming. We use an animation previewer
which performs quick rendering to preview the mo-
tion of the animation. Once we are satisfied with
the animation, the simulation data is sent to the ray
tracer which produces a high resolution image with
full color, shading, texturing, reflections and refrac-
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tions.

This paper will concentrate on the structure of the
three models defined above and will show how they
are acted upon by different components of the anima-
tion system.

3 TOPOLOGICAL HIERARCHY

Our models are represented by a topological hierarchy
of geometric primitives. At the lowest level of the
hierarchy we describe points in the model and at the
highest end we have groups of topological hierarchies
that are combined to make one object. The structure
we have developed gives us the greatest flexibility for
manipulating objects in the animation system.

This hierarchy is maintained throughout the an-
imation system. The geometric modeller first pro-
duces this hierarchy and then physical properties are
attached in the physical attribute modeller. The hier-
archy is maintained inside the simulator. The result
of the simulation is the same hierarchy or a modi-
fication of the original hierarchy. The hierarchy is
modified if an object fractures during simulation, i.e.
the topological structure has changed. Preserving the
structure during simulation enables us to use the out-
put of the simulator as input to a new simulation. It
also enables us to modify this new structure in the
geometric or physical attribute modeller. The struc-
tures are output after a set number of time steps in
the simulator. These structures can be used for recov-
ery if the system crashes. Simulations can take days
to to complete so the ability to restart is essential.

Objects of different dimensions are created by using
subsets of the hierarchy. We could have a simple par-
ticle system, a two-dimensional sheet or a full three-
dimensional object with multiple parts. An example
of the latter is a swing from a playground. The hier-
archical topology allows us to simulate the swing as
a whole but model it as separate pieces. The swing
could be described by two ropes and a seat. Each
piece is easy to model separately. Figure 2 shows a
representation of this swing in our system. It is also
desirable to give different properties to each section
of the swing. The ropes are more flexible and weigh
less than the seat.

The topological hierarchy contains information
about the internal and external structure of a model.
For flexible objects external forces propagate through
a model and deform it. Flexible objects need to have
internal structure for this propagation to be realistic.
Alternatively, one could ignore the internal structure
and treat the object as a rigid body which simulates
faster and then transform that object back into a flex-
ible object. For example, a stiff object falling under
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Figure 2: Hierarchy for Swing Model

gravity does not deform. The falling object can be
treated as a rigid body until it strikes another ob-
ject. At that point one needs to simulate the prop-
agation of the force throughout object which could
cause breaking.

The external structure of a model is extracted from
the topological model for the rendering phase of the
animation system. A hierarchy is still required to
give different surface properties to each part of the
model. In the swing example the ropes and the seat
are assigned different colors and specularity.

This topological hierarchy is used for defining shape
and dimension of objects. In order to simulate these
objects we need to define physical attributes for each
level of the hierarchy. The next section will describe
the implementation of this hierarchy and the physical
properties that are needed for simulations.

4 STRUCTURE OF MODELS

The model, whether it is a geometric, physical or sur-
face model is the key element in our animation sys-
tem. It is the input to or the output from all compo-
nents in our system. Figure 1 shows the data flow of
the animation system. We will define the structure of
these models and show how the structure is effected
by the different components of the animation system.

The following primitives are used in the hierarchy:

Point: a vector describing a position in three space.
Physical properties associated with each point are ve-
locity and mass. Velocity is represented as a vector.

Edge: a line segment connecting two points. Each
edge in an object can represent a spring. A spring
and damping constant is assigned to each edge that
acts like a spring. There is also a spring threshold
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which determines the maximum amount the spring
will stretch before breaking.

Face: a triangle defined by three points. Constants
for air resistance or surface drag are assigned to each
face. The constants define the smoothness or the re-
sistance to wind of a face.

Cell: a list of connected edges and faces. Cells are
defined for 2D and 3D objects. The boundary of a 2D
cell is a polygon. The boundary of a 3D cell defines a
closed unit of volume. In both cases, extra edges may
be added diagonally across the surface or across the
interior section of a cell to make the cell more rigid.
In a physical environment a 3D cell with no internal
structure will collapse easily. The cell is the only
level of the hierarchy that does not contain physical
attributes.

Figure 3 shows the interdependencies between the
hierarchy primitives.

/ Bonds \ N
\ / oints

Cells
Faces
Figure 3: Interdependencies Between Hierarchy
Primitives

A subobject is constructed by combining the above
primitives in correct hierarchical order. The order is:
points, edges, faces, and then cells. Adjacent edges
in a subobject will share points. To avoid duplica-
tion, point information is stored only once. Edges
then refer to points by using a pointer into the point
structure. This is also true for faces; adjacent faces
share points. Cells are a special case. Adjacent cells
share bonds but not faces. Faces are not shared be-
cause we generate unique normals for each face of a
cell. This will be explained in section 5.4.

We can now define more precisely the three types
of models in our system using the above primitives.
A geometric model is defined by one or more sub-
objects where the subobjects are ordered hierarchi-
cally. A physical model is a geometric model with
all its associated physical attributes, including phys-
ical attributes which are assigned to the object as
a whole, such as a coefficient of friction. A surface
model simply contains points and faces. It does not
contain all the points and faces of an object, it only
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contains those points and faces that create the exte-
rior surfaces of the object. No physical attributes are
included in the surface model.

5 OPERATORS

We consider the animation system to consist of a
set of operators which act on our models and con-
vert them into new models possibly of a different
type. Our current system has four operators. We
refer to these operators as the time, breaking, glu-
ing and boundary operators. Three of the operators,
time, breaking and gluing, are topological modifiers.
They transform a physical model into a new physical
model with different topology. The boundary opera-
tor transforms a physical model into a surface model
for wind calculations and rendering.

5.1 The Time Operator

We consider time to be an operator since a time step
is the action causes the forces to be applied to each
object in the system. Forces are applied to points.
We start by computing the spring forces. Each edge
has a spring and damping constant associated with
it. The length of the edge is determined from the po-
sition of its end points. The stretch and velocity of
the spring scaled by the strength and damping of the
spring determines one part of the force to be applied
to the two end points. Collision detection is done be-
tween points. The collision detection subroutine uses
a penalty method to repel points that are about to
collide. This repulsion force gets added to the spring
forces. Other forces added are gravity, weight, fric-
tion and forces due to wind fields and air resistance.
The point’s position is updated based integration of
these computed forces over time. The levels of the hi-
erarchy that are essential for this operator are points,
edges and faces.

5.2 The Breaking Operator

The breaking operator is actually a suboperator of
the time operator. Breakage starts when we are com-
puting forces at a single time step. Before simulations
are started, the resting or equilibrium length of each
edge is computed and saved along with a breaking
threshold. The new length of each edge computed
during a time step is compared to the saved equilib-
rium length. If the difference exceeds the breaking
threshold then the edge is marked as broken.
Marking the edge as broken is just the first step in
the breaking process. The cell level of the hierarchy
was created to be the unit of breaking for all 2 or
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3 dimensional objects. If one edge in a cell breaks
then that cell is no longer valid. All other edges in
the invalid cell are broken unless the edge is shared by
another cell which is valid. Therefore, the second step
involves finding all cells that the broken edge belongs
to and marking those cells invalid. All edges unique
to the invalid cell will be marked as broken. Figure 3
shows a two way pointer between cells and bonds in
the hierarchy. This two way pointer in essential for
this step of the breaking operator.

The third step for this operation is to update the
face boundary information for the broken object. The
cell structure contains pointers to the faces that sur-
round a cell. When a cell becomes invalid the face
boundary information is updated. Breaking may ex-
pose some faces that were part of the internal struc-
ture.

5.3 The Gluing Operator

Gluing is an operation that takes two physical models
and combines them into one. The new model that re-
sults from this operation can then be glued to another
physical model. If we were only concerned about ren-
dering composite objects, two objects could be posi-
tioned close enough together (and possibly interpene-
trate one into the other) so that the result would look
like one object instead of two. The two objects need
to be attached in some way so that when the forces
of the environment are applied the two objects will
move together as one.

In the modelling environment two objects are po-
sitioned such that the portions of each object that
are to be glued together are nearby without touch-
ing. The gluing operator takes as input the distance
between points to be glued. The gluing operator
searches for pairs of glue points that are this distance
or less apart from each other. New edges are created
between glue points. The two objects are combined
into one object description structure. Physical prop-
erties are assigned to these new edges. For a tight
bond between the two objects one could pick stiff
spring and damping constants with a high breaking
threshold. The glued edges can be stronger, weaker
or the same as the other edges in the object.

In order for the glued area to be a strong bond it
is important that the number of points and distance
between points be similar. The new bonds formed
by the gluing operator should be of similar lengths.
If one object has a very fine grid structure and the
other object has a very course grid structure the re-
sult could be that all the points in the specified region
of the first object get bonded with one point in the
second object.
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Figure 4 shows two examples of two rectangular
objects which are glued together. In the first exam-
ple, the spacing of the points and the length of the
edges for both rectangles is different. When glued,
the points in the top rectangle are glued to just one
point in the second rectangle. The resulting shape of
the glued object is not the expected shape for gluing
these two objects. The second example in figure 4
is a better example of a good glue bonding between
objects. The spacing of points for both the objects
is similar. If the grid structure of the two objects
that are glued together is different, the motion of the
object as a whole will not be uniform.
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Figure 4: Gluing Two Objects Together

Although the two objects have been glued together
to form one physical object, the identity of the two
parts is not lost. Each physical model has a list of
subobjects that are part of the model. For exam-
ple, we construct a teapot by making the body, spout
and handle as three separate objects. We can then
position the body and spout and apply the gluing op-
erator. We can take the result of that operation and
position the handle and apply the gluing operator an-
other time. The result of the gluing operations is one
object called a teapot that has subobjects: handle,
spout and body. A subobject is defined by simply
giving a range of points, edges, faces and cells within
the object definition structure.

5.4 The Boundary Operator

The boundary operator takes a physical model and
produces a surface model for rendering. The bound-
ary operator calculates external or boundary faces in
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a physical model. This operator only applies to 3D
objects. In 2D objects all faces are external and for
lower dimensional objects there are no surfaces.

For simplicity, the boundary operator is explained
for a 3D physical model that is constructed from a
cubic lattice of cells. Each cell has 12 faces, two tri-
angles for each square side of the cube. Cells do not
share faces. Figure 5 shows one side of a cubic cell
that contains four points and two faces. The four
points, labeled P1, P2, P3, and P4, are shared by
cells A and B. Four unique faces are defined using
these four points, two of the faces belonging to cell
A and two faces belonging to cell B. The difference
between the faces for these two cells is the ordering of
the points for each face. The ordering of the points
determines the direction of the normal for each face.

The normal is used for rendering when the face is
an external face. The normals for internal faces are
used when an object is broken and an internal face
becomes an external face. The two faces for cell A
are: (P1,P3,P2) and (P1,P4,P3). The two faces for
cell B are: (P1,P2,P3) and (P1,P3,P4). The normal
for the faces in cell A points in the direction of cell
B and the normal for the faces in cell B points in
the direction of cell A. If cell A becomes invalid and
all edges are broken, the normal for the faces of cell
B will be pointing outward which is correct for an
external face.

Figure 5: Faces Shared By Adjacent Cells

External faces can be found and marked by travers-
ing the list of faces for an object and eliminating faces
that have a reverse face. In the above example the
pairs (P1,P3,P2) and (P1,P2,P3) cancel each other
out making this face internal. We are assuming an
specific ordering of the vertices. We assume that the
ordering will always start with the same point (i.e.
P1) for each set of faces.

Once all external faces have been marked we can
extract them and their points from the physical model
to create a surface model. This surface model is used

Sweeney, Norton, Bacon, Haumann and Turk

for rendering.

6 CONCLUSIONS

We have presented a framework for creating models
for simulated physical environments. We believe this
framework gives us the flexibility to experiment with
models of varying dimensions and physical proper-
ties. Various techniques are applied to these models
to create animations of bouncing, breaking, and wind
blown objects. Two animations have been created
using our system and models: Tipsy Turvy(Bacon et
al. 1989) is an animation of a teapot that flexes and
fractures, and Leaf Magic (Arya et al. 1991) is an ani-
mation showing leaves floating and moving in various
wind fields.
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