Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

INCORPORATING SIMULATION INTO A DESIGN ENVIRONMENT

Christopher Landauer

Computer Science Research Department
The Aerospace Corporation
Los Angeles, California, 90009-2957

ABSTRACT

This paper describes a methodology that provides a
simulation capability for certain kinds of software en-
vironments. The required simulation functions are
partitioned into a number of well-defined functional
roles that represent basic units from which discrete
event simulation programs can be constructed.

We use a new approach to constructing modelling
environments. To insulate the users from many of
the software integration details, the environment uses
explicit knowledge of its own structure to support
the user in selecting and adapting the system compo-
nents. The knowledge is in the form of “wrappings”,
which are expert interfaces to the programs, tools,
and other resources in the environment. This ap-
proach is a simple and powerful mechanism for mak-
ing many different kinds of resources available to work
together in an integrated way.

This paper defines the functional roles in an exist-
ing set of discrete event simulation support functions,
and describes wrappings for them. It also shows how
ordinary differential equation solvers fit into the same
framework.

1 INTRODUCTION AND BACKGROUND

This paper will show how to wrap discrete event sim-
ulation control mechanisms to make them explicitly
available in a modelling environment. The wrappings
are part of a methodology for building flexible envi-
ronments by encapsulating both programs and data
with the explicit knowledge they embody, and with
knowledge of their various styles of use (see [Bell-
man,Gillam 90], [Landauer 90], [Walter,Bellman 90]).
These wrappings provide standard interfaces to soft-
ware resources, and provide knowledge about the re-
source, so that other tools in the environment can
interact appropriately with the wrapped resource, ei-
ther to provide it with information or to use its infor-

1180

mation effectively.

The original context of this problem is the Vehicles
system (see [Bellman,Gillam 88], [Gillam 89]), a large
software environment supporting conceptual design
of spacecraft, but the approach applies more gener-
ally to any software environment containing a hetero-
geneous collection of software resources (programs,
databases, computational tools, interfaces, simula-
tion models).

The Aerospace Corporation’s role in defining new
space systems and analyzing new space missions em-
phasizes the need to perform concept exploration
studies that use diverse models, including simula-
tions, analytic equations, and other software pro-
grams. The key to effective modeling in this con-
text is a software environment that supports flexible
use of a wide variety of models to help pose and an-
swer study questions. This breadth requirement leads
to the incorporation of many heterogeneous methods
and software resources, including analysis tools, ex-
ternal programs, datasets, and models. This flexibil-
ity requirement leads to the need for rapid integration
of models and other resources.

In order to provide a rich environment in the early
stages of complex system design, many of these re-
sources must be allowed to interact with each other,
as well as with the conceptual design being built or
examined. It is clear also that access should be pro-
vided to other analysis programs, including those de-
veloped externally.

The power of a complex software environment lies
in its collection of models and modelling paradigms
(in this context, the programs and databases are also
models), and it is clear that harnessing that power ef-
fectively is a difficult problem. An important princi-
ple that has emerged from the work on Vehicles is that
the appropriate flexibility requires all of the models
to be made explicit, and that they be explicitly de-
scribed in ways that can be processed by the environ-
ment. These descriptions are called wrappings (see



Incorporating Simulation into a Design Environment

[Landauer 90)); they are fundamental to our methods
of allowing the environment to assist the user in se-
lecting appropriate tools, models, or other resources,
adapting them to the study context, and interpreting
their results.

The “wrapping” methodology builds flexible envi-
ronments by encapsulating both programs and data
with the explicit knowledge they embody, and with
knowledge of their various styles of use. These
wrappings provide standard interfaces to software re-
sources, and provide knowledge about the resource,
so that other tools in the environment can interact
appropriately with the wrapped resource, either to
provide it with information or to use its information
effectively. An overview of the wrapping methodology
is presented elsewhere in this conference (see [Bellman
91)).

One of the important modelling paradigms in con-
ceptual design is discrete event simulation, and this
paper will describe our methods for making simula-
tion functions available in the design environment.

2 DESCRIPTION OF WRAPPING

A wrapping is an expert interface that describes
a software resource (see [Landauer 90], [Bellman
91]). The wrapping contains a large amount of self-
description, including knowledge of what the resource
does, when it is appropriate to use it, how it should
be used, and what information and performance can
be expected from it. We are developing a general ap-
proach to wrapping programs and other software re-
sources, including the notations necessary to describe
wrapped resources to other components of a system,
methods for using those wrappings, and the relation-
ships between problems to be solved and resources
that may be relevant to that problem.

The wrapping methodology is a new way to pro-
duce open integrated software environments. While
the methodology has not been formulated completely,
certain principles are clear. Everything gets explicit
descriptions, computational analysis tools, simulation
programs, databases, analytic and structural mod-
els, user interfaces, and other external programs and
data, including the programs that interpret the wrap-
pings of other software. Any part of a complex soft-
ware environment is considered to be a software re-
source.

The descriptions are tailored to expected uses, so
that the same software may have many different de-
scriptions. A program may have many partial de-
scriptions; complete descriptions are not needed (they
are often much too complicated anyway). Descrip-
tions for human users of the software are different

1181

from descriptions for programs that use the software,
since they ask different questions of a resource, and
can be expected to know different things about it.
Integration occurs at many levels, from transferring
bytes between resources on (possibly) different ma-
chines at the low level to exchanging information at
the high level. It is more than making it so that pro-
grams can talk together; it also involves determining
when it is appropriate for them to do so. These and
other principles are being sharpened and refined into
a description of the methodology.

The methods we have devised apply quite generally
to any software and data in a heterogeneous environ-
ment. Furthermore, this wide an outlook is necessary
to make full use of the wrappings, since the integra-
tion process involves all of the resources, and since the
programs that process wrappings are as fundamental
to the integration process as the tools and methods
being integrated.

3 SIMULATION MODELS

There are many implementations of individual simu-
lations in modelling environments, and even many
implementations of simulation languages or other
construction mechanisms, but all of them make cer-
tain assumptions about the kind of scheduling and
event management used; some of the better ones al-
low a few choices of event management functions, but
they are typically only a very few. We want to make
explicit all choices of models, including those that
support others, such as the event management func-
tions in simulation models, ordinary differential equa-
tion solvers, and other numerical analysis algorithms
used, because they are not (always) neutral; their as-
sumptions are often important.

For example, the scheduling mechanisms in most
simulation languages include the assumption that if
two events are scheduled to occur at the same simu-
lation time, then the one that was scheduled first in
real time is the one that will be invoked first. This as-
sumption provides a zero-delay communication chan-
nel which can (and often is) be abused to give un-
realistic effects in simulation models (for example,
the first event sets a value that the second event can
read). Some languages circumvent that channel by
separating the events that are scheduled for the same
simulation time and selecting from them in a special
way (randomly, in many cases). Our modeling expe-
rience shows that making the assumption an explicit
part of the model helps prevent this kind of abuse.



1182

4 EXAMPLE IMPLEMENTATION

The simulation mechanisms we use are based on a
common set of support functions (see [Landauer 85])
that handle the time and event management func-
tions. The support functions are written in C, and
run on many UNIX systems. These functions fall
into two classes: those that occur before the simula-
tion starts, and those that occur while it is running.

The simulation support functions assume that each
indivisible event is defined by a separate C function
call, so that, for example, interruptible events are
modeled by several event functions.

Simulation time in the simulation program is man-
aged by a main loop that checks for interrupts (these
simulation programs are interactive, and allow user-
or program-generated interrupts at any time), deter-
mines the next event to occur (via the event manage-
ment functions described below), updates the current
simulation time, and calls the appropriate event func-
tion to act out the event.

The simulation initialization functions include a
function that defines an event to the system (by defin-
ing its event function), and a function that defines a
monitor to the system (each interrupt is distributed
to an appropriate user interrupt monitor).

The event management functions include selecting
the next event to occur, and scheduling a new event
to occur some simulation time in the future.

The functional roles that normally occur before the
simulation run are:

o define an event function,
e define a user interrupt monitor,

e add event at a specified simulation time in the
future.

The last of these can occur before or during the sim-
ulation; here it defines the initial set of events. The
only other process that precedes the simulation run
is initializing the simulation time. We will not treat
the interrupt monitors further in this paper.

The functional roles that normally occur during the
simulation run are:

e add event at a specified simulation time in the
future,

e check for outstanding interrupts,
e select event to occur next,
¢ update simulation time,

o invoke event function.

Landauer

The first of these can occur before or during the sim-
ulation; the rest comprise the main loop. We will not
treat the interrupt processes further in this paper.
There is nothing in the system that precludes defin-
ing new events during the simulation run; that capa-
bility and others (the interrupt processing and user
interface, for example) are beyond the scope of this

paper.
5 SIMULATION CONTROL PROCESS

This section will describe one typical decomposition
of the simulation control process into a set of fun-
damental building blocks (or functional roles), show
how different implementations of the building blocks
(different functions) can be put together in different
ways, and provide example wrappings of some of the
roles and functions. The wrappings contain enough
information to determine when the composition of the
building blocks makes sense, when certain capabilities
are required in the functions, which sets of capabil-
ities are compatible and incompatible, and how the
functions pass data and control to each other.

5.1 Functional Roles

The functional roles we will wrap are as follows, listed
with their input and output parameters:

o defnevnt - define an event reference

— inputs - event function, event name

— outputs - event reference

e initevch - initialize current event schedule and
simulation time

— inputs - none

— outputs - event set reference

o schedule - add event at a specified simulation
time in the future

— inputs - event reference or event name,
event set reference

— outputs - success flag
e nextevnt - select event to occur next

— inputs - event set reference

— outputs - event reference
e updtsimt - update simulation time

— inputs - event reference, event set reference

— outputs - simulation time



Incorporating Simulation into a Design Environment

o invkevin - invoke event function

— inputs - event reference

— outputs - success flag

An event reference is an internal data structure that
contains the event name, the event function pointer,
and whatever statistics about the event invocation
that we choose to keep. An event set reference is an
internal data structure that keeps track of the cur-
rent set of scheduled events and the simulation time.
Each run of a simulation program uses one instance of
this structure. With this as an explicit structure, we
can allow several simulation runs to be concurrently
executed (there are still some event function imple-
mentation details to consider for separation of global
variables and auxiliary function data, but these are a
well-known part of writing re-entrant programs).

These functions and roles have the following infor-
mation in their wrappings. These descriptions are in
an informal version of the wrapping language, which
is still under development.

5.2 Wrapped Process Descriptions

The first set of definitions describe our decomposition
of the simulation processes into sequences of steps. In
all cases, any quoted string is a comment that denotes
a text description of the process, role, rule, or func-
tion, that can be displayed to the user.

The “repeat” control structures in many of the pro-
cess descriptions have no explicit condition for termi-
nation. The assumption is that the associated pro-
cess is not controlled by the steps listed; they form a
pattern of activity that must conform to the process.
The process is driven from the outside.

Also, whenever a condition or a function does not
have an explicit definition, either the system or the
user will be asked to supply the information. These
wrappings are not a complete definition of the re-
sources; they are a description that can be used in
many ways.

PROCESS simulation
“define and run a simulation”
RULES curevstf, futevstf
“rules are prerequisites for
using a process”
STEPS simsetup; simcntrl;
END
PROCESS simsetup
“define events and initialize
a simulation”
STEPS repeat { defnevnt; }

1183

initevch;
repeat { schedule; }
END
PROCESS simentrl
“simulation main loop”
STEPS while (nextevnt)
updtsimt;
if (endtime) break;
invkevin;
}
END
FUNCTION endtime
“has simulation time exceeded
termination time?”
OUTPUT Boolean
END

5.3 Wrapped Functional Roles

The next definitions describe the functional roles
discussed above. There will be type declara-
tions for event_function, event_name, event_reference,
event_set_reference, null_event, and simulation_time
(we use an abstract data type definition to define
data structures; its details are not important here).
We call these functional roles and not just functions
because we want to allow different sets of functions
to map into these roles. Indeed, for each functional
role, there may also be a process description, since in
some cases, the functional role must be decomposed
into smaller roles before it can be mapped into a par-
ticular function.

ROLE defnevnt
“define an event reference”
INPUT event_function, event_name
OUTPUT event _reference
END
ROLE initevch
“initialize current event set
and simulation time”
INPUT none
OUTPUT event_set_reference
END
ROLE schedule
“add event instance at a
specified simulation time
in the future”
INPUT event_reference or event_name,
event_set_reference
OUTPUT Boolean
END



1184
ROLE nextevnt

“select event to occur next”
INPUT event_set_reference
OUTPUT event_reference or null_event
END
ROLE updtsimt

“update simulation time”
INPUT event_reference,

event_set_reference

OUTPUT simulation_time
END
ROLE invkevin

“invoke event function”
INPUT event_reference
OUTPUT Boolean
END

The roles of defnevnt, updtsimt, and invkevfn will
not be decomposed, since they correspond fairly di-
rectly to particular functions.

5.4 Event Management Processes

There are two event management choices to make:
whether or not to use a separate current events set,
and whether to use a heap or a list data structure for
the future events set. Here, curevset and nocurevs
are opposing values for the context flag curevstf, in-
dicating, respectively, that there is or is not a sepa-
rate current events set. The conditionals below are
analogous to LISP conditionals.

RULE curevstf
“separate current events set
or not”
COND “expect many simultaneous

events or not”

IMPL curevset

COND “insist on precluding zero-time
information transfers”

IMPL curevset

ELSE nocurevs

END

Now we describe how the first context flag affects
the functional roles for initevch, schedule, and nex-
tevnt. Here, “PRECOND” marks a pre-condition
that must be true before the process can be elabo-
rated in the steps indicated. We also note that the
schedule process is not conditional; it is always elab-
orated as addfutev (since our implementation always
adds an event to the future event set).

Landauer

PROCESS initevch
PRECOND nocurevs
STEPS initfuts;
END
PROCESS initevch
PRECOND curevstf
STEPS initfuts; initcurs;
END
PROCESS schedule
STEPS addfutev;
END
PROCESS nextevnt
PRECOND nocurevs
STEPS futevnt;
END
PROCESS nextevnt
PRECOND curevstf
STEPS if (not curevnt)
if (futevnt)
futevnt;
addcurev;
while (sametime)
futevnt;
addcurev;
}
}
else fail;
}
curevnt;
END
FUNCTION sametime
“is current event time same as
first future event time?”
OUTPUT Boolean
END

The function initcurs initializes the current events

set. The function curevnt checks for a non-empty
current events set and takes one randomly as the next
event to use. The function addcurev adds the current
event to the current events set. The implementation
of the current events set is entirely hidden.

Finally, we describe the other context flags,
heap_set and list_set, which are used to select func-
tions for the roles of initfuts, futevnt, and addfutev.
The role of initfuts is to initialize the future events
set. The role of futevnt is to check for a non-empty



Incorporating Simulation into a Design Environment

future events set and take the earliest one as the next
event to use (there is no assumption about what hap-
pens with ties). The role of addfutev is to add one
event to the future events set, at the specified time.
The implementation of the future events set is en-
tirely hidden within these roles. The mapping from
these roles and the context flags to specific functions
that implement the roles with a linear list or a heap
is easily made.

RULE futevstf
“future events set structure”
COND “event are scheduled for both

short and long intervals”
IMPL heap_set

COND “event are scheduled mostly
for short intervals”

IMPL list_set

ELSE list_set

END

There is an overall implementation choice to make
about whether to use these simulation support func-
tions, or another set of functions such as SIMPACK
(from Paul Fishwick at the University of Florida), or
nest 2.5 (from Alexander Dupuy and Jed Schwartz
at Columbia University). They have somewhat dif-
ferent assumptions and decompositions, but the over-
all structure can be described with the above mech-
anisms. As a user gains experience with these func-
tions, more conditions on the appropriate choice for
a problem can be recorded, so that eventually the
system can assist a user in making the choice.

6 DIFFERENTIAL EQUATION SOLVERS

A very common special case of discrete event simu-
lation uses systems of ordinary differential equations
(ODEs) to model dynamical systems. Good ODE
solvers like the usual Runge-Kutta methods or the
Bulirsch-Stoer methods (which interpolates with ra-
tional functions instead of polynomials; see [Press et
al. 86]) can be incorporated into a simulation model
to propagate a differential system from one time point
to another.

Both of these fourth-order solvers use a variable
step size, and monitor their own accuracy by the use
of a fifth-order check equation. The time steps de-
fine discrete events, which can be interleaved with the
usual kind of events in a time-stepped discrete event
simulation program, and various alarm conditions on
the step size or accuracy estimates can be used to
schedule other events that will examine or repair the
problem.

1185

Both of these functions use explicit start and stop
times, estimated first step size, minimum allowed step
sizes, and required accuracy. They also expect a
derivative evaluation function and an initial value to
be supplied.

In this case, the function calls have the same for-
mat and the same parameters, so the only selection
criteria are accuracy of estimation and time required.
The Runge-Kutta algorithm tends to take many more
steps, each of which is much simpler. The Bulirsch-
Store method appears to be more accurate, but only
in long time steps. If we need to have accurate
intermediate values, for plotting or spatial interac-
tions, the Runge-Kutta method appears to be supe-
rior. These considerations would be written explicitly
into the wrappings of the two functions, so that the
role of “propagate a differentiable dynamical system”
could be attached to either function according to con-
text.

7 CONCLUSION

This paper applies our general notion of wrapping to
discrete event simulation models, and shows how dy-
namic models can be selected and integrated into a
large modelling environment. This method provides
a simulation capability in a design environment, in-
stead of just incorporating a set of simulation pro-
grams.

REFERENCES

[Bellman 91]. Kirstie L. Bellman, “Flexible Soft-
ware Environments and the Design of Complex
Systems”, These Proceedings

[Bellman,Gillam 88]. Kirstie L. Bellman and April
Gillam, “A knowledge-based approach to the con-
ceptual design of space systems”, Proceedings 1988
SCS Eastern Multi-Conference, pp. 23-27, The So-
ciety for Computer Simulation (March 1988)

[Bellman,Gillam 90]. Kirstie L. Bellman and April
Gillam, “Achieving Openness and Flexibility in
Vehicles”, pp. 255-260 in Proceedings of the
SCS Eastern MultiConference, 23-26 April 1990,
Nashville, Tennessee, Simulation Series, Volume

22(3), SCS (1990)

[Gillam 89]). April Gillam, “A knowledge-based ap-
proach to planning the design of space systems”,
Proceedings 1989 SCS Eastern Multi-Conference,
The Society for Computer Simulation (1989)



1186

[Landauer 85]. Christopher Landauer, “Network and
Protocol Modeling Tools”, Proceedings IEEE/NBS
Computer Networking Symposium, Gaithersburg,
Maryland, December 1984, p. 87-93 (December,
1984)

[Landauer 90]. Christopher Landauer, “Wrapping
Mathematical Tools”, pp. 261-266 in Proceedings
of the SCS Eastern MultiConference, 23-26 April
1990, Nashville, Tennessee, Simulation Series, Vol-
ume 22(3), SCS (1990)

[Press, et al. 86]. William H. Press, Brian P. Flan-
nery, Saul A. Teukolsky, William T. Vettering, Nu-
merical Recipes: The Art of Scientific Computing,
Cambridge University Press (1986)

[Walter,Bellman 90]. Donald O. Walter, Kirstie L.
Bellman, “Some Issues in Model Integration”, pp.
249-254 in Proceedings of the SCS Eastern Multi-
Conference, 23-26 April 1990, Nashville, Tennessee,
Simulation Series, Volume 22(3), SCS (1990)

AUTHOR BIOGRAPHY

CHRISTOPHER LANDAUER is a researcher in
the Computer Science Research Department of The
Aerospace Corporation. His research interests include
formal specification and verification of communica-
tion protocols, analysis and modeling of distributed
computing systems, pattern detection and tracking
from noisy data, mathematical experiments related
to these applications. He has published several pa-
pers in the fields of validation of expert systems, the
use of mathematical tools within expert systems, and
high-level simulation modeling and statistical infor-
mation retrieval.

Landauer



