Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

THE SEPARATION AND EXPLICIT DECLARATION
OF MODEL CONTROL STRUCTURES
IN SUPPORT OF OBJECT-ORIENTED SIMULATION

Michael K. Ogle

Department of Mechanical and Industrial Engineering
Louisiana Tech University
Ruston, Louisiana 71272

ABSTRACT

This paper introduces concepts for the separation
of model logic control structures from simulation
models in support of the object-oriented simulation of
manufacturing systems. A three part separation of
simulation model structures is proposed to support
and enhance object-oriented simulation of
manufacturing systems. The three-part structural
separation is made to enhance flexibility, extensibility,
modularity, reusability, and understandability. The
process of partitioning a simulation model into these
three parts utilizes systems modeling and object-
oriented modeling principles. = These modeling
principles enable definition of the individual modules
which represent the natural partitioned structure and
dynamics which should be present in an object-
oriented simulation model.

1 INTRODUCTION

Traditional simulation modeling implementations
package all aspects of the simulation model (entities,
processes, resources, queues, decisions, etc.) within a
network of nodes, or within a procedural definition of
model entities and flow, or within a totally declarative
description of components and flow. These past and
current approaches stifle flexibility and limit the range
of experimental options available to the simulation
modeler.

Existing commercial simulation systems developed
in non-object-oriented languages suffer from a lack of
flexibility and modularity which is inherently available
in an object-oriented language such as Objective-C or
Smalltalk. Simulation model code developed in a non-
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object-oriented language is difficult to reuse because
modeling constructs contained in these languages
contain limited provisions for the alteration and
extension of system models.

Many of the commercial systems available today
face limitations due to the fact that they were
originally created from five to twenty years ago.
These older systems, although constantly updated and
upgraded, were created in an age of limited computing
resources. Compromises were made to provide
working systems which would operate successfully in
an age of limited resources. Although the computing
resources available to programmers and model
builders have increased, most languages and
development environments must maintain some level
of compatibility with past implementations. The
implementation decisions which limited their
capabilities and flexibility must influence future
generations of that product Object-oriented
simulation systems which will be available in the near
future will have few of the limitations currently
contained within the existing commercial systems.
Existing systems continue to use a "separate
procedures act on separate data" orientation. Object-
oriented systems use a modular "objects act on their
own data" orientation. This encapsulation of structure
and function enhances modularity and provides the
ability to move to a more powerful generation of
simulation tools.

2 PARTITIONING OBJECT-ORIENTEDSYSTEMS

Object-oriented systems have been touted as a
great step forward in the building of simulation
models. Object-oriented systems encapsulate structure
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(data) and function (procedures) within one package
called an object. Although object oriented systems
have capabilities which provide for a great deal of
flexibility, modularity, and reusability, they may still be
used to create poor designs. The encapsulation
process is often carried too far, placing all functionality
and control for individual model elements within a
single object definition. This type of packaging has
the drawback of destroying modularity and adding
overhead and redundancy of definition. Structuring
programs in this manner is no better than structuring
them in a non-object-oriented language in the same
manner. Monolithic encapsulated structures do not
exhibit good object-oriented programmingstyle. Large
monolithic structures exhibit a lack of modularity and
flexibility for object definition and reuse.

Partitioning of object-oriented simulation
structures is a necessity to allow greater understanding
of individual object representation and behavior.
Partitioning is also necessary to maintain consistency
with structured programming techniques. Building
blocks are as much a part of object-oriented
simulation models as they are to the building of a
physical model. Building blocks in current object-
oriented simulation environments tend to be a
complete physical encapsulation of code for each
representation of a complete physical entity. These
encapsulated packages bundle element definitions and
the external control definitions used to specify dynamic
behavior. Rather than an actual physical packaging of
functional modules, there should be a conceptual
perception of packaging the functionality. The
conceptual packaging approach allows construction of
individual objects from basic building blocks which
may be added, removed or substituted at will, resulting
in enhanced modularity and support for flexible
modeling and experimentation.

3 CONTROL STRUCTURE LIMITATIONS

There are two types of control that exist in an
object-oriented simulation system. The first type of
control element is the control exercised by the system
simulation objects. Every simulation has methods for
controlling event lists, coordinating the movement of
data from one file to another in support of entity and
resource processing, and for manipulation of the data
structures which define the basic simulation creations,
operations, and terminations. The system simulation
objects provide the monitoring and control which is
not present in the real-world operation of the system,
but are necessary to provide for computer simulation
and experimentation with the system. In this paper,
this control type will simply be referred to as
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Simulation System Control (SSC). The SSC objects
should be transparent to the user. Any construct
which does not have a corresponding relationship with
an actual real-world entity should be transparent to
the user to provide a conceptual match with the real-
world system.

The second type consists of control exercised by
other object structures as part of the user’s conceptual
model. These are decisions which emulate the
decision making and physical control processes present
in the modeler’s view of the system. The user may
determine that an entity visiting a station A will then
go to station B... unless B is full... in which case it will
go to C. The user may also determine that C cannot
process the entity unless it has resources such as tools,
a worker, a fixture, a process plan, and authorization
to proceed. These are all control elements which any
user must define. This type of control will be referred
to as User Logic Control (ULC).

In traditional simulation systems the ULC is
implicit in procedural code and the linking of system
elements such as queues, stations, and material
handling elements. All control of the model objects is
imbedded in the model along with definition of the
model elements. This arrangement stifles flexibility by
creating a structure which is difficult to modify and
conceptually hard to understand. There are concepts
such as branching, matching, selecting, etc. which
enable the modeling of control, but these elements are
also placed within model code as generic procedures
normally modeled as nodes. These apparent modules
are essentially hardwired in the code and treated
equally to other blocks in the model. An object
passing through the system passes through these
blocks as if they were part of the real physical system.
Modeling systems using this form of representation is
conceptually incorrect and forces the user to deal with
elements that do not have a one to one physical
analog with real world elements. Control and model
elements are hardwired together into the model,
restricting the user’s ability to easily change and
evaluate control methodologies.

It is proposed that ULC be removed from the
model element definition to enhance flexibility,
modularity, and to provide greater conceptual
understanding of the model. This control will exist as
a separate object definition external to the individual
model elements which correspond to the actual
physical elements found within a system undergoing
simulation.
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4 CONTROL STRUCTURE SEPARATION

Four general areas of research which constitute
the scope of this paper are shown in Figure 1. The
central issue of this paper is identified in the core of
the figure; the development of an explicit
representation of control structures applied to the
object-oriented simulation of manufacturing systems.

Object-Orlented Programming
Sofvare Separatonof | Knowledge-Based
Exporiment,|  Systems and
Enghoarg | 15 S0 AvifcialInteligence
Contmlitmchm
Manufacturing Systems

Figure 1: Four Areas Forming Scope Of Paper

Software engineering issues applied to simulation
have become increasingly important in recent years.
Simulation system developers and users both realize
that most simulation development tools are too
inflexible to handle the complexities presented by
automated manufacturingsystems. A great percentage
of manufacturing simulation models are only pursued
as tools to evaluate the up-front design of single
systems. Manufacturing simulation models must
increasingly address the ongoing needs of an
enterprise. Models that are constructed in the design
phase should be able to service and evaluate the
system once it is up and running. Ongoing simulation
efforts have been hampered by the lack of flexibility
and capability present in current simulation packages.

Flexible manufacturing systems (FMS) are one
example where a model of the system must deal with
dynamic changes throughout its operational lifetime.
Haddock and O’Keefe (1990) note that the flexible
nature of these systems is handled poorly by the
current generation of commercial simulation systems.
The authors state that when dealing with complex
manufacturing systems such as an FMS...

...simulation models should be less disposable,
being saved to answer future questions about
reconfiguration. ...with many simulation tools,
the incorporation of complex scheduling and
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routing algorithms and heuristics is difficult.
Where it is possible to model scheduling, the
scheduling rules are too often ’hard wired’
into the simulation code, and are difficult to
alter. There is a considerable need to make
scheduling a separate component in the
simulation.

Software engineering issues applied to discrete
eventsimulation are presented by McKay et al. (1986).
A set of guidelines and coding standards that are
generic for any software system, as well as a set of
guidelines that are specific for simulation models are
presented. The authors point out that some work has
been performed to identify the software engineering
requirements of simulation languages, but that the
research results had not taken shape in current
simulation languages. The authors also point out that
simulation code can have a long, multiuse life if the
developer uses "black-box" concepts, maintains clean
interfaces, and separates the problem into specific and
generic characteristics.

Nance and Arthur (1988) present a set of
modeling methodology objectives that should be
characteristic of any complex modeling endeavor. Five
primary objectives are set forth by the authors, the
three which pertain to the issues presented in this
paper are summarized below.

- Adaptability: changes in successive model
specifications should be accomplished with
relative ease so that extensibility is achieved
without extensive cost.

- Reusability: model components should be
extracted and made accessible for subsequent
modeling tasks.

- Maintainability: model specifications should
enable their modification to meet needs
originally unstated.

The above "-ilities" are needs that are not
addressed by the current generation of commercial
tools. Models are developed for one time usage due
to two factors; model developers who do not
understand the relationship of a single model to
subsequent models and commercial simulation
package designers who design toward ease of use
while neglecting the ability to reuse. Recent
developments in software tools and modeling
methodologies will enable both of these shortcomings
to be addressed.
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§ CONTROL REPRESENTATION AND OBJECT-
ORIENTED SIMULATION

Fuller (1989) comments on the shortcomings of
current manufacturingsystems evaluation tools. Fuller
believes that control systems for flexible factories are
moving toward a distributed model where processing,
scheduling, and routing decisions are made by a
network of computers. Fuller states that...

Simulation analogies for... intelligent task
planners must be adopted. These must be
available to the user in the form of
environmental queries for information that
reflects the way actual cell controllers and
adaptive scheduling algorithms perform on
the factory floor. Based on information
gathered on the spot, the process or routing
logic can make intelligent decisions, and find
minimum-cost paths. Cost functions may be
based on distance, queue depths, and
machine utilization considerations.  For
example, a high precision mill is a scarce
resource, and thus a low precision operation
might be routed to an available low precision
mill even if it takes longer.

The explicit representation of control in a
simulation model provides a closer conceptual
equivalent to the control which will be applied in the
real-world system.

Burns and Morgeson (1988) also note that the
current generation of simulation tools poorly represent
any form of intelligent decision making and control
within systems. The authors propose a separation
between physical and cognitive activities.  The
cognitive activities would be performed by actors
which have a range of responsibility and a decision set
to apply to their action space. An object-oriented
world view of simulation is also proposed for the
modeling of the actors and their decision making
capability.

Decision makers also exist on the factory floor.
The decision makers on the factory floor may be
workers or shop floor managers. The decision makers
may also be a hierarchy of intelligent controllers
starting at the workstation level, advancing through
cell controllers, and finally reaching up to the point of
a plant wide information system. Representation of
any of these types of decision making entities is
handled poorly within current process oriented,
network based simulation tools.

Simulation tools which utilize an object-oriented
structure have been proposed to address the control
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issues introduced above (Beaumariage et al. 1990)
(Glassey and Adiga 1990) (Ulgen et al. 1989). These
papers provide the best review of three concentrated
efforts toward the development of object-oriented
simulation tools which enhance reusability. Each of
these efforts are beginning to develop capabilities for
the separation of decision making capabilities from the
physical objects represented in the system.

Other object-oriented simulation environments
have been constructed at a rapidly increasing rate due
to the increased interest in the capabilities of object-
oriented approaches. Derrick, Balci, and Nance
(1989) identify object-orientation as one of thirteen
conceptual frameworks associated with simulation.
Rothenberg (1986) reviews the state of object-oriented
simulation and presents the features needed for
enhancement of the paradigm in the future. Although
it appeared only five years ago, this paper was
published at nearly the infancy of object-oriented
simulation.

Many researchers have associated the
development of object-oriented programming with
advances in artificial intelligence due to the ability of
object-oriented systems to naturally represent complex
relationships between data items. Reddy (1987)
explains the relationship between the property
descriptions offered within object-oriented structures
(descriptive, structural, behavioral, and taxonomical)
and knowledge based simulation. A more extensive
treatment of the KBS system may be found in Reddy
et al. (1986).

In an article surveying models and their
relationship to artificial intelligence, Shannon (1987)
provides a rather extensive analysis of object-oriented
simulation model building. The paper is based on the
development experiences gained from the Simulation
Environment System first presented by Adelsberger et
al. (1986). Shannon presents the concept "logic
graphics”. Logic graphics are similar to flowcharting.
Symbols are interactively placed on the screen to
represent the systems logic. This is the way GPSS,
SLAM, SIMAN, and other graphic simulation tools
perform this function of representing the system
model logic. Model logic is hardwired into the logic
graphics. Complex control structures are difficult to
model in this fashion and testing alternative
arrangements requires many unnecessary changes to
the model.

Ruiz-Mier and Talavage (1987) describe the
SIMYON system which is programmed in the hybrid
language CAYENE. CAYENE is a hybrid language
because of its mix of object-oriented programming,
logic programming, and discrete event simulation.
The authors report that their goal in creation of this
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system is to develop a representation of decision
making behavior. SIMYON utilizes the network
modeling method which in its graphical form Shannon
above called "logic graphics." The rule based structure
using logic definition capabilities within SIMYON
enables the representation of additional behavior that
cannot be modeled by a network of nodes. However,
the network structure and other relationships between
components are still buried within the object
definitions.

6 MODEL-EXPERIMENT-CONTROL (MEC)

Research in object oriented simulation at Arizona
State is currently focused on the construction of a
partitioned conceptual model of a Model-Experiment-
Control (MEC) structure. The structure separates
User Logic Control from the definition of model
elements and the experiments under which the
elements are evaluated. The combination of the
Model, Experiment, and Control constructs are
referred to as MEC (Model-Experiment-Control).
The MEC structure may be seen in Figure 2.

Experiment
Model
Element Slot
* State Model
Logic
* Behavior Control
Slot

Figure 2: Model Element As An Expansion Box

The cube in Figure 2 represents a model element
(such as a tool, a part produced in a factory, a
machine, a process plan, etc.). The model state is
represented through the local storage of data. The
model behavior is represented by procedures or
methods through which it is manipulated and interacts
with other objects. On the right hand face of the cube
is a set of expansion slots. Cox (1984) introduces a
concept known as Software-IC’s. The Software-IC is
an analog to hardware integrated circuits which can be
plugged in and associated with other circuits as part of
a functional computing system. In this figure, each of
the slots represent a placeholder for a software
expansion board (a separate object definition) which
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may be plugged into a simulation model object to
extend its functionality. The expansion board analogy
is made because unlike the hardware-IC, which is
usually placed onto a board permanently, the
expansion board may be pulled and replaced with
another board (object or set of objects) to easily
modify the functionality or appearance of an object
This software expansion slot (placeholder for
expansion boards) ties an instance of a model element
in a simulation to other functional elements
(expansion boards) in a simulation. A library of
software expansion board objects may be developed
within the object oriented simulation language. The
simulation model user may then elect to use a default
expansion board object or choose from a library of
objects. Modifying the functionality of an individual
simulation model element involves removal of the
original expansion board object and replacement with
another expansion board object.

The experiment slot represents the use of this
object in an experiment run by the user. Separation
of the model from the experiment is a valuable and
flexible partitioning of functionality in a simulation.
Zeigler (1976) and Oren and Zeigler (1979) first
proposed this distinction in their work on system
theoretic concepts. Pegden (1987) implemented this
distinction in the SIMAN simulation language. As
explained below by Pegden, the distinction between
model and experiment is invaluable to the flexibility of
model building in support of simulation
experimentation.

The system model defines the static and
dynamic characteristics of the system. In
comparison, the experimental frame defines
the experimental conditions under which the
model is run to generate specific output data.
For a given model, there can be many
experimental frames resulting in many sets of
output data. By separating the model
structure and the experimental frame into two
distinct elements, different simulation
experiments can be run by changing only the
experimental frame. The system model
remains the same.

The last slot, Model Logic Control, contains the
logic to manipulate the model element as part of a
larger system. In traditional simulation systems, the
model logic is implicit in procedural code and the
linking of system elements such as queues, stations,
and material handling components. All control of the
model objects is imbedded in the model along with
definition of the model elements. This arrangement



1178

limits flexibility by creating a structure which is difficult
to modify and conceptually hard to understand. There
are concepts such as branching, matching, selecting,
etc. which enable modeling of control, but these
elements are also placed within model code as generic
procedures normally modeled as nodes. These
apparent modules are essentially hardwired in the
code and treated equally to other blocks in the model
An object traversing the system network model passes
through these blocks as if they were part of the real
physical system. The act of modeling systems using
this form of representation is conceptually incorrect
and forces the user to deal with elements, namely
branching constructs, that do not have a one to one
physical analog with real world elements. Control and
model elements are hardwired together into the
model, restricting the user’s ability to easily change
and evaluate control methodologies.

The Model-Experiment-Control (MEC) concept
provides an extension to the separation of model and
experiment specifications. These three object types
must be defined for any model element in the
simulation.

The first object type specification applies to the
declarative description of the physical objects present
in the real system. This first type of object definition
provides specification of the basic physical structure of
an object, object behavior, and relationships with other
objects. The relationship definitions do not specify the
physical link or routing to another object. The
relationship definitions specify a message protocol for
interaction with potential clients with which the object
may interact.

The second type describes the experiment under
which the simulation will be run. The various
parameters of the simulation concerning simulation
run length, statistics gathering, assignment of
distributions, etc. are handled by this type.

The third type of object specification deals with
the model logic control elements. The control
elements will decide when and how these structures,
capabilities, and relationships will be used to support
the simulation. This third type specifies the control
which is exercised upon the physical objects described
as the first type. The control specification defines the
routings, the decision points, and all other control
decisions which are applied to the model elements
physically present in the system. The control
structures may also have a one to one correspondence
with actual controllers found on the factory floor or
envisioned by the simulation developer. A library of
objects will exist for each of these types. The
simulation model developer may then associate
individual library elements to form a fully functional
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model element object.
7 CONCLUSION

The state of the art in object-oriented discrete-
event simulation points in the direction of a separation
of model control logic from the model definition and
the experiment under which it is evaluated. The
separation of structures helps meet the objective of
creating simulations that are flexible, modular,
reusable, and understandable. The process of
separating the simulation model structures is in
progress within the Systems Simulation Laboratory at
Arizona State University. The structure is being
implemented in the object-oriented programming
language Smalltalk. Smalltalk is currently running on
multiple computing platforms (IBM RS-6000,
Macintosh, and IBM-386 under Windows 3.0) within
the Systems Simulation Laboratory and provides a
highly portable implementation of developed code.
The partitioned object definitions developed during
this effort are constructed using a programming
language independent modeling methodology known
as the Object Modeling Technique (OMT)
(Rumbaugh et al., 1991).
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