Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

APPLICATION OF HIERARCHICAL MODELING CONCEPTS
TO A MULTI-ANALYSIS ENVIRONMENT

Joel

Luna

Dynamics Research Corporation
60 Frontage Road
Andover, Massachusetts 01810

ABSTRACT

An environment developed by the author which enables
the application of multiple analysis formalisms or
paradigms to a commonly defined problem is extended
to include hierarchical modeling concepts. A description
of the development of the object-oriented environment is
provided as background. Concepts of model development
are introduced in order to emphasize the value of
hierarchical modeling concepts. Implementation of these
concepts in the environment is then discussed. The
implementation of experimental frame concepts, in
which system behavior represented in the model is
separated from behavior related to experimentation, is
explored. Hierarchical concepts are then applied to the
pairing of a model with an experimental frame in order to
address future simulation goals such as hybrid and multi-
level simulation.

1 BACKGROUND

The effort to develop an environment which would
provide for the application of several analysis methods to
a single problem resulted from an in-house effort to
analyze a logistics pipeline network. Various tools were
used to analyze the flow of failed parts through a repair
network. The first approach involved formulating the
repair system as a set of differential equations and
solving them analytically for measures such as mean
number of failed units at each repair facility (the closed-
form or CF approach). This did not allow for constraints
on selected facilities or modeling the pipeline as a closed
loop system (fixed population). The next approach then
was to analyze the system using continuous simulation
(the CS approach). One advantage of this approach was
that it was much easier to model the system since the
differential equations did not have to be solved
analytically. However, this approach did not allow the
explicit modeling of facility constraints, such as a finite
number of servers per facility. In addition, various
statistical measures were desired such as standard
deviation. Therefore, the model was then implemented
as a discrete-event simulation in Simscript IL.5 (the DES
approach). Out of this entire process two things became
Clear:

1165

1) We were constantly redefining essentially the
same model of the system (that is, a collection of
interconnected states with associated data such as mean
service time).

2) More than one approach was useful, especially
utilizing the CF and CS approaches for quick-look
results and DES for somewhat longer run times but with
less limiting assumptions.

Therefore, we decided it was worthwhile to investigate an
environment in which these approaches could be applied
to a commonly defined problem. Such an environment
was implemented using object-oriented techniques and
the Smalltalk programming language and environment
(Goldberg and Robson 1983, Digitalk 1988).

This initial effort was described in Luna 1990 in
which the CS and DES approaches were combined in a
single environment. Through a single interface, a user
could define a model as a set of interconnected states,
each with associated measures such as mean service time
and number of servers (for the DES approach).
Parameters defining the experiment, such as the number
of runs (DES) or integration step size (CS) and reporting
interval for the collection of results could also be entered
by the user. The environment then provided the option
for selecting either continuous or discrete-event
simulation. The underlying object structure which
supported the environment consisted of formalism-
specific model components (for CS and DES) and
processors defined respectively as facilities and
controllers. A follow-on paper (Luna 1991) extended
this approach to include the CF approach as well, which
performed symbolic integration and differentiation in
order to formulate and solve the differential equations
based on the model network defined by the user. In
addition, a first attempt was made at defining the basic
object framework needed to implement other formalisms,
such as analytical queueing models and Petri-nets.

The next important step identified in the preceeding
paper was to include the ability to represent any one of
several possible levels of abstraction of a given model.
This paper will address the issues of providing

1166

hierarchical model construction and abstraction concepts
(particularly those in Zeigler 1984 and Kim and Zeigler
1987) to this environment. Applying hierarchical
techniques will also lead to implementing the future
requirements of simulation environments as described in
Oren and Zeigler 1986 (such as hybrid
analysis/simulation approaches). Changes to the
original object structure required to implement a more
modular approach will be described.

2 CONCEPTS OF MODEL DEVELOPMENT

Since the environment is oriented particularly to model
development, some concepts of model development merit
discussion. Model development and execution takes
place in the larger context of system design and analysis.
Since models provide cost effective means of evaluating
existing systems or system designs, they are often
utilized for decisions made about the actual or intended
system. Thus, the models must be able to represent the
system sufficiently such that decisions made regarding
the system will have the effect on the system as predicted
by the models. Models may be required to represent the
system at various conceptual levels. For example, in
top-down system design, functions are allocated based on
system requirements in successive stages from the more
abstract to the more concrete. This process is generally
described as concretization. At each stage, questions of
optimal allocation of functions (such as tradeoff of
alternative system designs) can be answered using models
of the system at that stage. Thus, model development
should be able to be conducted top-down to correspond
with top-down system design.

On the other hand, the system may already exist but
may require investigation (for example, to correct a
problem). A bottom-up approach may be needed to
provide a representative model of the system. In this
approach, specific behavior of system elements is
modeled, validated, and then succesively interfaced with
other models of other elements until the system is fully
modeled. In order to reduce unnecessary complexity,
several model elements may be combined into one
element (aggregation) or represented by a simpler type of
model (abstraction).

Model development must also take into account more
than one view or aspect of the same system depending on
the objectives of the analyst. The same system might
give rise to two or more different models in which some
aspect of the system is emphasized more in one than in
the others. This is particularly true of large systems
involving several groups or agencies. An example is
given in Figure 1 in which logistics analysts concerned
with spares requirements are more interested in the details
of the pipeline model than the analysts concerned with
manpower of a logistics support network. This points
out the need for a multi-facetted modeling methodology

Luna

identified in Zeigler 1984 and Zeigler 1987. An
environment for system analysis based on one or more
system models should provide the user the opportunity
to model selected aspects of the system which are
consistent with all models of the system without having
to exercise all of the models. A hierarchical approach to
modeling, in which the model of a system is comprised
of components which are coupled together, provides the
basis of multi-facetted modeling by allowing the user to
select either complex or simple models to couple
together in modeling the system.

Logistics Support
Network Model

Pipeline
Model

Manpower
Model

In the spare analyst's view. . .

Logistics Support
Network Model

Pipeline
Model

Manpower
Model

In the personnel analyst's view
Figure 1. Multifacetted Modeling Must
Examine More Than One
View of the System

3 HIERARCHICAL MODELING CONCEPTS

Hierarchical modeling is made possible through
modularity. If the system model can be divided up into
modular components with specified input and output,
then the components with compatible input/output can
be connected (or coupled) together to form other
components. The successive coupling of components to
form components which in turn can be used to form
other components is the essence of hierarchical modeling
(see Figure 2).

Hierarchical Modeling Concepts

Model Model
in—9| 5 |—Pout in—-| p [out
Model C
. Model Model
in —+91 (;}e out
Model D
. Model M
in —-P» (::e -—— (;fel - out
Figure 2. Successive Coupling of Modular

Components is the Key to
Hierarchical Modeling

3.1 Atomic Model Components

A model component falls into one of two groups. The
first of these, the atomic model components, comprises
the basic model building blocks from which the model is
constructed. The components are considered atomic since
their internal structure cannot be altered by the user.
Atomic components perform the basic model behavior
by their transition (external and internal) and output
functions. For example, a queue as an atomic
component receives input and places it in an internal
collection if its server is busy, otherwise it serves the
input directly. This method or procedure is an external
transition function, since transition of the state of the
queue is prompted by an external event. If the server
becomes free and the collection of inputs is not empty,
the next input is served (an internal transition function).
When the server has completed servicing, it sends the
served item to the next queue as its input (an output
function). As a software object, the methods of an
atomic component are comprised of these transition and
output functions. The object's variables are those needed
to perform its functions (such as the collection of inputs
or the server's mean service time). Utilizing object-
oriented techniques (i.e. inheritance), various types of
atomic components can be defined.

1167

3.2 Coupled Model Components

The second type of hierarchical model component is the
coupled model component. These components are
comprised of subcomponents (which can be either atomic
or other coupled components) which are connected to
each other and to the input/output interfaces of the
coupled component. Input to a coupled component from
an external source is passed to the 'initial' or 'first’
subcomponents, and the output of a coupled component
is the output of the 'final' or 'last' subcomponents which
is passed to an external destination (see Figure 3).
Unlike atomic components, the user may alter the
structure (the number and connections of
subcomponents) of the coupled component. Therefore, a
coupled component must have a list of its
subcomponents and their interconnections. Coupled
components are used as a means of constructing and
saving large scale models of systems in modular units
which are more easily handled and understood. These
modular units together form the model hierarchy for the
user. At run time, the defined hierarchical model is
implemented as a set of interacting software objects
which correspond to the interconnected atomic model
objects.

Coupled Component B

Atomic Atomic
Input —»{Component Component [Output
BA BB

External Interface Internal Interface

Coupled Component D

Atomic Coupled Atomic
Component |—§»| Component || Component
A B C

Figure 3. Subcomponents with Internal and
External Interfaces for Coupled
Components

4 IMPLEMENTATION OF HIERARCHICAL
CONCEPTS

The impact a hierarchical approach will have on the
existing environment is now ready to be examined.
There is a strong correlation between the atomic
components just discussed and the model objects
discussed in Luna 1991. The model objects perform

1168

transition and output functions via a protocol specific to
the formalism implemented. Messages utilizing this
protocol are passed between the processor object and
model objects, and also between the model objects
themselves. Therefore, each model object must have
references to the other model objects to which it is
connected. Clearly, this is a coupled component feature
which is embedded in the model object. Prior to a given
run, the model objects and their corresponding data and
connections are defined or selected. After the model
objects are instantiated, they are each given the pointers
or references of the other objects to which they are
connected (the objects that will receive their output) as
part of their initialization. The result is that the
executeable objects are now coupled, and as the model is
executed, the output of any model object is sent as input
to those model objects which are its destinations. Since
the objects each have their own coupling references, there
is significantly less message traffic than if each model
object had to pass all messages to a centralized message
passing object which contained the coupling
specifications.

In order to implement the hierarchical approach, the
creation of an executeable version from a hierarchical
definition of the model must be defined. First, consider
the coupled components defined in Figure 3. In the
previous environment, a model definition table contained
a list of names of destinations for each model object as
shown in Figure 4a. When the model is initialized, each
of the model objects are instantiated and their reference
(pointer) with their corresponding name (string) are
stored by the overall environment manager (object
SimMaster). Then each model object in turn obtains the
corresponding reference for each of the names of
destinations and stores them internally. When the model
is executed, each object contains the references it needs to
pass output on to its destinations. A simple
modification to make in order to implement hierarchical
modeling is to provide such a table for each coupled
component (which contains the list of subcomponents
and coupling specifications as defined before) with two
additions. The first is a list of the names of the 'initial'
components (those that receive input external to the
coupled component). The second is a list of the names
of the 'final' components (those that provide output
external to the coupled component). The resulting
change is shown in Figure 4b. These two lists serve as
a means of providing the external coupling of a coupled
component, since they indentify those components
which receive input and produce output external to the
coupled component. Since each coupled component is
defined in the same way, these coupled components can
be used to form other coupled components and thus
perform hierarchical modeling. When the model
comprised of atomic and coupled components is to be
executed, model objects which correspond to the atomic
components are instantiated as before. References to

Luna

destination objects are provided as before as well, only
now destinations external to a coupled component which
are themselves coupled components must be found.
Since the input list of a coupled component provides the
list of names of subcomponents which receive input, the
corresponding model objects provide the references of
destination objects for those components that are sources
of the coupled component. Likewise, the model objects
corresponding to the list of output names provide the
references of source objects for those components which
are destinations of the coupled component. For example,
if some component has coupled component D in Figure
3 as a destination, then the input list of component D as
shown in Figure 4b identifies atomic component A as
the destination object (since it receives input for coupled
component D). A coupled component is not instantiated
as an object per se, rather, the model objects
corresponding to its atomic components are instantiated.
The atomic components of successive levels of coupled
components are instantiated until the resulting
executeable version of the hierarchical model consists of
a set of interconnected software objects which map to the
atomic components.

Component Destination
A BA
BA BB
BB C
C --
(a)
Connecﬁons.
D A C A B
B C
B BA BB BA BB
(b)
Figure 4. Tables of Model Connections for

a) Original Environment;
b) Modified to Incorporate
Hierarchical Modeling

It is important to note that aggregation or
concretization can easily be implemented using
hierarchical constructs. Aggregation, that is the lumping
together of several components into one component, can
easily be performed by replacing a coupled component at
any level by a simpler coupled component or even an
atomic component. Concretization can be performed by
replacing atomic components with more complex
coupled components. This clearly supports both top-

Hierarchical Modeling Concepts

down and bottom-up modeling approaches in support of
system design and analysis.

5 TOOLS FOR HIERARCHICAL MODEL
DEVELOPMENT

The implementation of hierarchical modeling requires
support, particularly in the storage of atomic
components, coupled components, models and
corresponding data. Zeigler proposes the concept of a
model base which functions as a database for model
components (Zeigler 1984, Rozenblit and Zeigler 1985).
When developing a model, a user should have access not
only to the basic model building blocks (the atomic
components), but also the pre-constructed blocks
(coupled components). Therefore, these all need to be
stored and made available to the user. The data
corresponding to model components which need to be
stored as well should be stored independently. This
allows for multiple sets of data for the same component,
which is necessary for performing sensitivity analyses or
modeling different uses of the same component. One
example of the latter is in logistics pipeline analysis in
which several different parts (and thus different data) can
be modeled by the same pipeline components. Once a
hierarchical model has been defined by the user, possibly
using model components from the model base,
corresponding data must be selected from the database
which is used together with the hierarchical model to
form the executeable model. It appears from this that a
third database would be very useful - a database which
contains the hierarchical model merged with data to form
the full model specification prior to execution. That way
the model can be executed more than once without
having to be specified more than once. More
importantly, the model can be tailored directly to form
new models as a form of incremental programming.
Thus, three databases are required: a model base, for
atomic and coupled components; a database for
corresponding sets of data; and a model/database, which
holds a complete model with corresponding data.

6 EXPERIMENTAL FRAME CONCEPTS
AND IMPLEMENTATION

At this point, an environment in which the user is able
to define a model structure, combine it with data and
create executeable software objects which implement the
model behavior has been described. Without input or
control, however, the model objects will do nothing, and
without obtaining measures no results can be provided.
Thus the next step is to define the supporting
environment in which the model executes. Zeigler
proposes the concept of an experimental frame which
characterizes the circumstances under which a model or
its real system counterpart are subjected to
experimentation. The principle of separating the model
from the experimental frame is defined by Zeigler in part

1169

as "any data gathering/reduction (statistics, performance
measurement, etc) or behavioral control (initialization,
termination, etc) that is conceptually not carried out in
the real system should not be placed in its model but
rather formulated as part of the experimental frame”.
Zeigler's experimental frame has several elements: an
input generator (which generates input to the model) or
an input acceptor (which accepts selected parts of
existing input); a run control acceptor (which checks for
out of limit conditions for termination); and transducers
(which provide summary mappings of model variables to
measures of interest). These concepts were used as the
basis for the definition of an experimental frame for the
subject environment which provides input, run control,
and data collection and reporting. In the previous
approach, the model controller generated the input and
controlled the sequence of events (including data
reporting) while both the model objects and the overall
environment manager object (SimMaster) utilized objects
which perform statistical analysis. In particular, the
model object handled its own reporting and data
processing. In the experimental frame approach, these
functions are allocated from model objects to new objects
in order to separate model behavior from experiment
behavior.

6.1 Input Generation and Run Control

The experimental frame concept is comprised of an
overall Frame object and objects which fall into one of
two functional parts as shown in Figure 5. The first part
is the combination of the functions of input generation
and run control into a generator/controller object, which
with a processor object provides the mechanisms for
executing the model. Since the control protocol is
formalism specific, then the generator/controller object is
dependent on the formalism of the atomic objects. The
generator/controller would be implemented similarly to
the previous model controller objects. For example,
input to the CS model (for an open system) is in the
form of an input rate value which is passed to the initial
model objects as an argument to the message to update
rate values. It should be noted that input generation is
closely tied to run control for CS since the message to
update rate values is one of a sequence of messages sent
by the controller in each time step. The same is also
true for the CF approach, since the mean state value
equations are resolved for each new external input rate
value. Input generation and run control are much less
intertwined in DES since run control is distributed
among the model objects (as events are generated) rather
than centralized as it is for CS and CF. Input generation
can also differ by mode, depending on whether the
system is modeled as open or closed. The input for an
open system is generated at various intervals, which can
be deterministic or stochastic. The input for a closed
system is generated and passed to the specified model
objects prior to the start of the simulation. The different

1170

types of generator/controllers corresponding to the
different formalisms and modes all implement the same
protocol. The generator/controller class is instantiated
with corresponding parameters, such as the class of input
objects (for DES), interval time (for open systems), etc.
The processor object provides the underlying event
scheduling mechanisms which implements the time-
based or event-based execution of the model objects.

Experimental Frame

Input Output
Model

Input/

ontrol] Control Data Reporting

Figure 5. Experimental Frame Concept

6.2 Data Collection and Reporting

The second part of the frame concept to be implemented
as an object is the data collection and reporting function.
This function is performed by a group of software
objects which calculate measures based on events
occurring in model objects and record and/or process the
values of those measures. The model objects of the
previous environment were modified to eliminate the
built-in computation of measures and in their place a
more flexible approach was devised. Each model object
transitions through a series of states (changes in status)
in response to events. The measures of a model object
are related to these events or changes of status. For
example, the delay time in a queue is the time between a
pair of events (arrival and departure of a customer).
Thus, if each model object reports such events or
changes in status, a separate object which receives these
reports can calculate the delay measure for selected pairs
of events. These objects are the data collection objects,
called Probes, which are the parallel to Zeigler's
transducers. Different types of probes are needed for
different types of computations, thus there are a variety
of Probe classes available to the user. In fact, the user
may define his own measures simply by selecting a
Probe class and identifying which model events or
changes in status trigger the measure computation.

Since there can be more than one measure obtained
for a model object, there are more than one probe and

Luna

pairs of events to which probes respond. Thus, the
events for each probe must be filtered from all the events
being reported. The object which performs this task is
the ProbeEventHandler, which provides a mapping of
model events to probes. When the user defines which
measures are to be obtained from which models, the
ProbeEventHandler builds a table which maps the event
pairs of one or more model objects to a specific probe.

Not only the values of measures are desired, but often
statistics of the measures are desired as well. Another
object class, StatisticsObject, and its subclasses
implement statistical routines (e.g. mean, variation,
standard deviation) on the measure data. Each
StatisticsObject is paired with a probe so that each new
measure value updates the selected statistics. More than
one probe may be assigned to a single StatisiticsObject,
for example, when the average of delay for several queues
1s desired.

The probe concept consisting of ProbeEventHandler,
Probes and StatisticsObjects is shown in Figure 6. This
concept can also be applied to coupled components, thus
becoming hierarchical. The concept is the same for
coupled components as for atomic components, only the
subcomponents whose events trigger the probe must be
identified as well. For example, in a coupled component
of queues in series, an arrival event at the first queue is
an arrival event for the coupled component, and a
departure event at the last queue is a departure event for
the coupled component. The delay between these two
events (arrival at the first queue and departure from the
last queue) is the measure of delay for the coupled
component. Since the ProbeEventHandler maps atomic
component events to probes, the first event is mapped
with the first queue to the corresponding probe and the
last event is mapped with the last queue to the same
probe. The only difference for atomic components is
that the queue for both first and last events is the same.
Since probes can be assigned to coupled components,
measures can be specified at any level. In our series of
queues example, delay can be measured for each queue as
well as for the series of queues as a whole. This is
particularly important when trying to isolate certain
types of system or model behavior, such as during
debugging. Thus this probe concept provides a
consistent and systematic approach to collecting data
from the model. Probe structures (the assignment of
probes to model components) can be pre-defined for
specific measures, enabling the user to select certain
measures to be obtained without having to specify the
corresponding probe structure. The resulting probe
structure is then objectives-driven, since it is defined
based on the analysis objectives of the user. Providing
both objectives-driven and user-specified probes provides
the user with a great deal of flexibility in obtaining
desired results.

Hierarchical Modeling Concepts

Input

v

Model
Object

v

Model
Object

v

Output

Events

Figure 6. The Probe Concept Implementation

6.3 The Frame Object

The overall Frame object provides the instantiation,
execution and data reporting of a specified model.
Receiving the model, input, execution and probe
definitions, the Frame object creates the model objects,
interconnects them, creates a processor (if running
independently), a generator/controller object, a
ProbeEventHandler, probes, statistics objects, etc. The
Frame object has an established protocol for model
activation, suspension or termination, so that the user or
even another model can execute a model via this
protocol. The total frame implementation is shown in
Figure 7.

External Messages Utilizing

Input Frame Protocol
and Obtain
Run Results
Control

Statistics
Object

Input
Generator/
Controller

Create

Input
and
Control

Figure 7.

Experimental Frame
Implementation

1171

7 HIERARCHICAL MODEL/FRAME PAIRS

Since there is only one type of Frame object (it does not
vary by formalism), it has a specified protocol which
will be the same irrespective of the model it implements.
Any object interacting with the Frame object will
interact in the same way, making any executeable model
modular through its experimental frame. Therefore, the
model and its frame can be embedded in any component,
provided that component implements the Frame protocol
(as shown in Figure 8). The implementation of multiple
levels of simulation would then be possible, such as in
simulation of hierarchically composite items. For
example, a unit to be repaired in a logistics pipeline may
itself have subunits which may also need to be repaired.
The pipelines of these subunits may themselves be
dependent or independent simulations which are defined
by the user and embedded in higher level model
components.

Model A
Component Component o]Component
Lo N & RN = < RASRAR |

4

Frame Protocol

e.g., Activate

Suspend
Terminate

Figure 8. Embedding a Frame/Model within a

Component of another Model

Since a Frame object can execute any defined model,
the model embedded in another model component can be
switched out, even changing formalisms. This allows
the user to implement hybrid models, such as embedding
a CS model in a DES model. For example, if the server
of a queue can best be represented by a continuous
process, a continuous simulation of the server process

1172

can be embedded in a queue which is itself part of a
discrete-event simulation. This provides the user with
maximum flexibility for developing and executing
system models.

8 SUMMARY

The previous effort in developing a multi-
analysis/formalism environment in Smalltalk was
extended and modified to provide hierarchical model
definition for model objects of the same formalism. An
experimental frame was proposed which provides input
generation, run control, and data collection and reporting
by a suite of objects created by an overall Frame object.
A modular model/frame approach was developed in order
to implement hierarchical and hybrid simulation
approaches.

REFERENCES

Luna

AUTHOR BIOGRAPHY

JOEL J. LUNA is a Senior Analyst at Dynamics Research
Corporation. He is primarily involved in the application of
systems analysis techniques, especially modeling and simulation,
to a variety of projects. His current interests are in the areas of
simulation, object-oriented programming, and effective use of
graphical user interfaces.

Digitalk, Inc. 1988. SmallTalk/V286 Tutorial and Programming

Handbook. Digitalk Inc., Los Angeles, CA.

Goldberg, A. and D. Robson. 1983. SmaliTalk-80: The Language
and Its Implementation. Addison-Wesley Publishing Company,

Reading, MA.

Kim, T.G. and B.P. Zeigler. 1987. The DEVS Formalism:
Hierarchical, Modular Systems Specification in an Object-
Oriented Framework. In Proceedings of the 1987 Winter

Simulation Conference.

Luna, J. 1990. Object-Oriented Multi-Simulation Environment.
In Proceedings of the 1990 Summer Computer Simulation

Conference (Calgary, Alberta, Canada, July 16-18).

Luna, J. 1991. Object Framework for Application of Multiple

Analysis Paradigms. Object-Oriented Simulation 1991,
Simulation Series Volume 23, Number 3, 81-86.

Oren, T.1. and B.P. Zeigler. 1986. Multifacetted, Multiparadigm

Modelling Perspectives: Tools for the 90's. In Proceedings of

the 1986 Winter Simulation Conference.

Rozenblit, J.W. and B.P. Zeigler. 1985. Concepts for Knowledge-

Based System Design Environments. In Proceedings of the

1985 Winter Simulation Conference.

Zeigler, B.P. 1984. Multifacetted Modelling and Discrete Event

Simulation. Academic Press Inc., Orlando, FL.

Zeigler, B.P. 1987. Hierarchical, Modular Discrete-Event

Modelling in an Object-Oriented Environment. Simulation,

November 1987, 219-230.

