Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

ERROR DETECTION AND DISPLAY FOR GRAPHICAL MODELING ENVIRONMENTS

Robert F. Gordon
Paul G. Loewner
Edward A. MacNair
Haojin Wang

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT

Many performance modeling systems are now
graphically based, enabling the user to build a model
by directly drawing and manipulating a pictorial
model diagram on the computer display. These
modeling systems generally provide a menu driven
interface and an icon palette with which the user
specifies the model by selecting and linking icons and
then providing associated textual attribute informa-
tion. The resulting combination of graphics and text
forms the model specification and requires that cer-
tain rules be obeyed in terms of content, complete-
ness, syntax and semantics. Some classes of user
errors can be completely prevented with this type of
interface; others need to be detected and identified to
the modeler, ideally as the model is constructed.
Within the visual modeling paradigm, the detection
and display of errors is significantly more complex
than in text based modeling languages; the display
problem is particularly acute in the case of multi-
level, hierarchically structured models. In this paper,
we describe the error detection and display capabili-
ties we believe are needed in visual modeling tools
and describe the implementation of these capabilities
in the Research Queueing Package Modeling Envi-
ronment (RESQME).

1 INTRODUCTION

In the last five years, there has been a rapid devel-
opment of graphically based modeling systems
(Browne et al. 1985; Conway and Maxwell 1986;
Conway et al. 1987; Cox 1988; Davis and Pegden
1988; Gilman and Watremez 1986; Hurrion 1986;
Kurose et al. 1986; Melamed and Morris 1985; Miles
et al. 1988; Roberts and Flanagan 1988; Standridge
and Pritsker 1987). These modeling systems gener-

1139

Kurtiss J. Gordon
James F. Kurose

Department of Computer and Information Science
University of Massachusetts
Ambherst, Mass. 01003

ally provide a menu driven interface and icons with
which the user specifies the model by selecting and
linking the icons and by providing the associated at-
tribute information. The resulting combination of
graphics and text forms the model specification and
requires that certain rules be obeyed in terms of
content, completeness, syntax and semantics.

Some classes of errors can be completely elimi-
nated with this type of interface, while others need
to be detected and identified to the modeler as the
model is constructed. In this paper, we describe the
error detection and display capabilities which we be-
lieve are needed to support these graphical interfaces,
and discuss their implementation in the Research
Queueing Package Modeling Environment
(RESQME) (Gordon et al. 1986, 1987, 1990, 1991),
using this implementation as an example.

There is complexity in the specification of the
model even with the ease-of-use that graphical
interfaces provide. To develop realistic models, often
a large number of icons need to be displayed and/or
the graphical network may contain submodels that
represent a subnetwork of multiple icons in a hi-
erarchical model. The specification may be further
complicated with a large number of routing choices
and complex routing conditions. In addition, some
textual input is necessary to fully specify the model;
specifying attribute information (such as initial con-
ditions, run length, number of servers, variable
names, and routing conditions,) is better done tex-
tually than graphically. This textual information
may be subject to syntactic and semantic require-
ments. The above complexity can lead to user errors
both in omitting necessary information and in en-
tering erroneous information.

In this paper, we describe how the interface can
incrementally (i.e., while the model is being con-
structed) eliminate some classes of errors and detect

1140

and assist in correcting the other syntactical errors
interactively as the user builds the model. We dis-
tinguish this incremental avoidance, detection, and
notification of errors from the case in which a model
is first completely constructed and then “compiled”
or checked for errors in much the same way that a
program written in traditional programming lan-
guages is compiled. SIMAN (Pegden et al. 1990) 1s
an example of the traditional programming language
approach of error checking the whole model during
compilation. We also distinguish this incremental
error checking from a purely local checking for syn-
tax errors, as is done by packages such as BLOCKS
(Pegden et al. 1990). We will describe the need for
a more comprehensive error checking.

A number of other graphics oriented performance
modeling tools provide varying degrees of error
avoidance, detection and notification. Both PAW
(Melamed and Morris 1985) and BONES
(Shanmugan et al. 1988) adopt an avoidance ap-
proach towards errors. An icon or submodel (in the
case of BONES) can not be defined unless it is
completely and correctly specified (to the extent that
their incremental parsers can detect errors). Addi-
tional errors are then detected at compile time, when
the model is evaluated. An advantage of an avoid-
ance oriented approach is that any detectable errors
are localized; they can only be in the icon or sub-
model currently being defined. A disadvantage is
that the modeling process itself is constrained; par-
tially completed icons or submodels cannot be de-
fined, and textual information that is temporarily in
error (e.g., an arithmetic expression which relies on
a parameter, global variable or icon name that has
yet to be defined) is not permitted. Some existing
graphical modeling tools have thus opted for a more
flexible approach. For example, WITNESS (Gilman
and Watremez 1986) allows the modeler to partially
complete an icon definition (although those attri-
butes specified must be correct) before moving on to
specify or modify another part of the model.
RESQME provides additional flexibility in that in-
correctly specified modeling elements can be left in
an error state while additional model elements are
created or modified. It is of interest to note that the
creation of these additional elements may then cor-
rect these errors, a fact that should be detected by an
incremental parser. In either case, a more flexible
approach than strict error avoidance requires more
sophisticated parsing and error notification proce-
dures; these procedures are described in the latter
sections of this paper.

The remainder of this paper is structured as fol-
lows. Section 2 describes methods to eliminate

Gordon, Loewner, MacNair, Wang, Gordon and Kurose

classes of errors. Section 3 describes the need for
interactive error checking and some of the problems
related to incremental parsing. Section 4 describes
the interface for detecting and informing the user of
errors. We summarize the results and benefits in
Section 5.

2 ERROR AVOIDANCE

Graphical interfaces allow the modeler to create the
model by directly manipulating and linking icons
into a network. The resulting network diagram and
the corresponding attribute information comprise the
model specifications. The alternative is to fully
specify the model textually in a procedural language,
where each statement has a syntax requirement and
therefore a chance for error. With graphical inter-
faces, more of the specification can be accomplished
through drawing the network, thus reducing the
syntax requirements of the user.

The graphical interface replaces some of the text
entry with pointing and selecting. For example,
graphics can eliminate the syntax requirements re-
lated to routing connections. These connections can
be specified by pointing to the “from” and “to”
nodes on the diagram to specify each link. Further-
more, the environment can check that the con-
nection semantics are permissible based on the type
of nodes at the end of each link, so that for example,
routing lines cannot be connected to a source node
nor emanate from a sink node. (On the other hand,
the conditional or probabilistic predicates for these
connections need to be specified textually and are
therefore subject to syntax errors.)

Another way that the interface can help the user
avoid errors is to prompt the user for input specific
to the object being selected. For example, selecting
a service center would cause prompts related to the
service time distribution and the queueing discipline
to be displayed. An icon that represents an invoca-
tion of a parameterized submodel would have the
names of its parameters automatically displayed as
prompts. Defaults would be provided for many of
the replies to the prompts, so that the user need only
enter changes for many replies. Presenting a form
containing prompts for the required attribute infor-
mation reduces or eliminates the chances that the
modeler will omit this information.

Not only can the attribute prompts be dependent
on the icon selected, but also the attribute prompts
can be structured, so that the prompts are context
sensitive, i.e., dependent on the previous replies. For
example, if a priority discipline is selected, then a
prompt specifying priority attributes would be dis-

Graphical Modeling Environments

played, whereas this prompt would not be shown for
a first-come-first-served discipline. Additionally,
whenever there is only a restricted number of replies
for a given prompt, the replies would be selectable
from a list rather than requiring input. This tech-
nique is appropriate in certain situations, as in spec-
ifying a queueing discipline, but would obviously not
be appropriate for indicating the number of servers.

In addition, any order dependencies can be elimi-
nated (at least as far as the user is concerned). The
user can construct the model in any order, adding
details and making modifications at will. The model
can be worked on at one level and then submodels
introduced, or existing submodels may be connected
to form a higher level model. Some run parameters
may be introduced after the basic model is completed
and others before the model is constructed. Some
nodes may be connected and then others added and
reconnected. Since the software has access to all the
information the user has entered about the model,
the software can scan and interpret the information
in whatever order it requires.

The above error avoidance capability is accom-
plished in RESQME by an object oriented user
interface. RESQME provides two levels of infor-
mation for every object: graphics and textual attri-
butes. An icon represents a specific elementary
building block or a copy (invocation) of a submodel
and can be selected by the user from the icon palette.
In terms of object oriented programming, each icon
on the palette represents a class (for example an ac-
tive queue). Each class has specific attribute re-
quirements. When the icon is selected from the icon
palette and placed on the modeling surface, it be-
comes an instance (object) of that class. Its specific
attribute requirements appear in a pop-up window
when that object is either placed on the modeling
surface or selected for modification. Filling in its
attribute information fully specifies the object as an
instance of its class. For example, the object
“teller]” with 2 servers, first-come-first-served
queueing discipline, and exponential service time
with mean one is an instance of the class active
queue.

When linking these objects together, RESQME
checks the class type for compatibility. When se-
lecting an object, the attributes are shown in a
pop-up window, the prompts are specific to the ob-
ject, the replies are selectable whenever possible, and
replies affect the other prompts. The process of se-
lecting, linking objects, and specifying attributes of
the objects can be done in any sequence.

1141

3 INTERACTIVE ERROR DETECTION

In this section, we discuss the need for interactive
error detection with incremental parsing, and the
practical requirement to globally parse the model on
user demand, as motivation for the error display and
location capability we describe in Section 4.

When creating a model graphically, the modeler
can make syntax errors in naming objects (for ex-
ample duplicate names), in declaring variables (or
forgetting to declare them), and in writing ex-
pressions whether for routing, specifying distrib-
utions or assigning values. Immediate error
detection, just as when writing a program, allows
(but does not necessarily require) the modeler to
correct the error while entering that statement,
avoiding having to locate it again and avoiding the
problem of propagating the error. The modeler is
assured that the entries are syntactically correct be-
fore proceeding, and can be prompted and assisted
as soon as an error is detected.

In order to detect as many errors as possible as
soon as possible, incremental parsing is employed.
In RESQME, every identifier is entered into a sym-
bol table which contains the symbol type along with
other information. As textual information is entered,
its correctness is checked both in a local fashion
(within the attribute information of that object) and
in a more global fashion. The information is
checked to be correct for the specific prompt that is
being answered, to be consistent with the other in-
formation associated with the object, and to use any
referenced identifiers correctly. All identifiers are
checked for uniqueness. Each type of object has
specific types of parsing to be performed, and each
line of an object has a unique parse code for deter-
mining whether the information supplied is correct
or not.

Incremental parsing may not identify all errors,
and there is clearly a trade-off between the level of
complexity of the parser and the set of errors that
can be immediately detected. For example, some
errors result from the order in which information was
entered and/or modified. As a design decision, the
modeling environment may be programmed to de-
tect some of these errors, while not others. For ex-
ample, in RESQME if an undefined identifier is used
in an arithmetic expression in an object, an error will
be detected. If the identifier is then defined, the
previous error will still be displayed as an error until
a global parsing of the entire model is performed.

The global consistency problem can be addressed
by globally parsing the entire model every time a line
of information is entered, but this may adversely af-

1142

fect performance especially as the size of the model
and resulting symbol table increases. In RESQME,
we decided to balance this trade-off by checking
globally for duplicate names on each entry and
checking only locally for all other information asso-
ciated with an object.

We provide the modeler with the option at any
point to invoke global parsing, which will then re-
solve any inconsistencies. From that point, the user
can continue with incremental parsing until the need
for another global parsing. The parsing results are
saved so that further incremental parsing will take
into account the global checks to that point as well
as to allow error checking of previously saved mod-
els.

To further illustrate the above discussion, we
present a few examples of how immediate error de-
tection is implemented in RESQME. As an example
of automatic global checking, if a user enters a du-
plicate name, all objects with that name are imme-
diately flagged to the user as having an error
(displayed in red). As the user corrects the duplicate
name in an object or perhaps deletes an object with
the duplicate name, all objects which are no longer
duplicates are immediately flagged as correct (dis-
played in green).

As an example of incremental checking, as the
user enters any arithmetic expression, it is imme-
diately checked for the correct syntax. This includes
checking that all identifiers used have been previ-
ously defined. Any incorrect information is dis-
played to the user with a message about the error.

Additionally, any required information not yet
completed will be flagged to the user for entry. For
example, a queue without a service time distribution
would be flagged as being in error.

4 ERROR DISPLAY AND LOCATION

In text based modeling languages, a performance
model definition is specified textually (typically in a
file) and submitted to a compiler, which then checks
the model specification for syntactic and semantic
errors. Any errors are then listed in a file (possibly
interspersed among the model specification state-
ments themselves). Since text based model defi-
nitions are essentially sequential (being a series of
lines in a file), a natural way for the modeler to locate
and correct errors is to sequentially move (scroll)
through the model definition and error listing with
an editor, correcting errors as the error messages are
encountered.

In the case of graphically constructed models, the
problem of error display and recovery is significantly

Gordon, Loewner, MacNair, Wang, Gordon and Kurose

more complex for two reasons. First, the model di-
agram is (at a minimum) two dimensional and thus
there is no natural counterpart to the notion of
scrolling through the model definition. The problem
is even more complex in visual modeling environ-
ments like RESQME in which the entire model dia-
gram may not always be visible on the screen. The
model may be hierarchical (in which case only the
current level of the model is displayed) and/or only
a portion of the current level of the model may be
on the screen (in which case a panning command
may be required to move the window over the
modeling canvas). A second complication arises
from the very fact that the principal interface to the
model is graphical. The picture of the model serves
as the primary model view, with textual attributes
essentially hidden within the model’s icons and only
viewable via pop-up windows. The textual portion
of the model specification is then viewable only by
selection and only in object size pieces, preventing
the user from seeing (and changing) the whole model
specification in a single document. Our experience
has been that most modeling errors that can not be
prevented using the methods discussed above are as-
sociated with the specification of the textual attn-
butes. In the remainder of this section we discuss
possible solutions to these problems of error display
(i.e., indicating the existence of specific errors to the
modeler) and error location (i.e., the process by
which the modeler can locate mistakes in the model).

In some cases, displaying the existence of errors in
a graphical representation of a model can be quite
simple and can exploit the pictorial nature of the
model. If the textual attributes of an icon which is
currently displayed on the screen are in error, for
example, the icon can be displayed in a reserved
color like red to visually flag the error. If there is a
mistake in a routing chain definition, the routing
chain (or individual link) may be drawn in red. If
there is no icon associated with certain textual attri-
butes of the model (e.g., the specification of which
method is to be used to generate confidence intervals
in a simulation solution), the menu item which
would be selected to specify that information can be
displayed in red.

In each of the cases above, in addition to showing
that the graphical object is in error by color, color
can be used in the pop-up attribute window to indi-
cate the existence (or non-existence) of errors in the
specific line(s) of the underlying textual attributes.
Furthermore, to explain the specific errors associated
with those attributes, a context-sensitive error mes-
sage should be displayed.

Graphical Modeling Environments

1143

— Node Attribute Wi
QUEUE:cpug indow
TYPE:ACTIVE
SERVERS: |

DSPL:PS

CLASS LIST:cpu

WORK DEMANDS:x_

| S

SERVERS -
RATES:.2

memoryq

ACCEPTS:all

nter work demands for this class

Undefined identifier in expression f
— 4 2

disk —V

M ollocmem cpu m | relsemem
terminals
drum
semtmar tma Ind

Belset Mode !l

Housr ﬁ

Meve

T s40,u0] sanwy I on aan I ug 441 |

Evaiuate

O - 3 — 3

| —

Dutput Amal. Dalists

e

0|09
%j{é

|0

Figure 1. RESQME Screen Illustrating an Error

As discussed in Section 2, a graphic modeling en-
vironment may eliminate order dependence, allowing
the user to create and modify objects in any se-
quence. An additional problem this creates for error
display is that changing certain text attributes (e.g.,
an icon’s name) can either correct or create errors
that extend well beyond the icon itself, so that a
single change in a text attribute may significantly in-
fluence the model’s correctness and hence the colors
used in its visual display. This requires some mech-
anism to reparse objects, other than the one cur-
rently being modified by the user, and to redisplay
the colors of the affected objects. Ideally, only those
objects that can be affected by a change should be
reparsed. For example, if parameters in a submodel
are modified, these changes have to be reflected in
all copies (invocations) of the submodel where the
parameters are assigned values.

We illustrate the techniques and solutions for the
problem of error display as discussed above, by
showing how they are implemented in RESQME.
In RESQME, to view the attributes associated with
an object, the modeler displays the attributes in a

pop-up window. This is done by first selecting the
MODIFY command and then selecting (pointing to)
an icon, chain, or menu item in error. When the
textual attributes are displayed, those attributes in
error are shown in red. Also, if the current line (i.e.,
the line containing the text cursor) is in error, a de-
scriptive error message is displayed at the bottom of
the text pop-up window. The modeler can thus
visually identify the textual attributes in error
(through the use of color), move the cursor to the
line in error, view the associated error message, and
then correct the error. Figure 1 shows the icon cpu
in red (shaded). Selecting MODIFY and then the
icon shows the pop-up attribute window, which ex-
plains x as undefined.

When a textual attribute has been changed, the
object containing the textual attribute and all other
objects that have been influenced by the change in
this object are incrementally reparsed and if correct,
the prompt and reply lines for this textual attribute
(which were previously shown in red) are re-lettered
(in white). Additionally, if the correction of a text
attribute error results in the entire text attribute

1144

pop-up window becoming error-free, either the as-
sociated icon is redisplayed with a non-red (green)
background or the associated menu item is re-
lettered (in white). On the other hand, if a
previously-correct text attribute is changed and be-
comes in error, the incorrect text line(s) is shown in
red and the associated icon color or menu item is set
to red.

The discussion in this section has focused thus far
on displaying error indicators for either graphical
objects or text that are currently displayed on the
screen. In some cases, a model may be hierarchically
structured, being composed of different levels (layer
or submodels) which can only by displayed layer by
layer. At times because of size or panning or
zooming, only a part of a single level of the model
1s visible on the screen. Errors may then exist off the
screen, and some mechanism is needed to visually
flag the existence of these errors.

In RESQME, a menu command, LIST ER-
RORS, is provided to display a list of icons in error
within the current (sub)model. Selecting any item
from this list will then display that portion of the
model diagram containing the icon in error. The text
attributes for the object can then be selected for ed-
iting.

The existence of errors in other layers of the model
is indicated to the user by showing the LAYER
DOWN and/or LAYER UP menu commands in red
based on which layer(s) is in error. When traversing
to different layers (by selecting the LAYER DOWN
or LAYER UP menu item), the user is presented
with a pop-up of the layer names and can view the
desired layer by selecting the name from the pop-up.
If a layer has an error, its name is shown in red.
After moving to a layer containing errors, the
modeler can follow the visual flags discussed above
to determine the precise location and to correct each
error within the layer.

5 SUMMARY

In this paper we have discussed the importance of
interactive error detection and display in graphical
modeling environments. One of the greatest
strengths of graphical modeling environments is that,
to the extent that a graphical representation of a
model is syntax free, many kinds of potential errors
are avoided. However, the complete specification of
a model contains both graphical and textual com-
ponents, and these textual components still present
opportunities for syntax errors. The goal of the
modeling environment should be to detect these er-
rors as they are introduced by the user and quickly

Gordon, Loewner, MacNair, Wang, Gordon and Kurose

alert the user to their existence and location. In this
way the user can correct individual errors as they
occur, rather than having them accumulate and per-
haps interact in complex ways.

We have also discussed the kinds of errors which
may occur. Some are structural errors which can be
detected immediately and locally. Others are con-
textual or entry order dependent, and can only be
found with a global analysis of the model.

When the model is defined hierarchically and
when it is too large to display on the screen all at
once, we have shown how to direct the user to the
error by the development of on-screen surrogates or
pointers. We have illustrated techniques for interac-
tive error detection and display to help users more
quickly develop useful, error free models.

REFERENCES

Browne, J.C., D. Neuse, J. Dutton, and K.-C. Yu.
1985. Graphical programming for simulation of
computer systems. In: Proceedings of the 18th
Annual Simulation Symposium, ed. A. Miller,
109-126. IEEE Computer Society, Los Alamitos,
California.

Conway, R. and W.L. Maxwell. 1986. XCELL: a
cellular, graphical factory modelling system. In:
Proceedings of the 1986 Winter Simulation Con-
ference, eds. J.R. Wilson, J.O. Henriksen, and
S.D. Roberts, 160-163. IEEE, Piscataway, New
Jersey.

Conway, R., W.L. Maxwell, W. McClain, and S.
Worona. 1987. Users guide to XCELL+ factory
modeling system. Redwood City, California: Sci-
entific Press.

Cox, S.W. 1988. GPSS/PC graphics and animation.
In: Proceedings of the 1988 Winter Simulation
Conference, eds. M.A. Abrams, P.L. Haigh, and
J.C. Comfort, 129-135. IEEE, Piscataway, New
Jersey.

Davis, D.A. and C.D. Pegden. 1988. Introduction
to SIMAN. In: Proceedings of the 1988 Winter
Simulation Conference, eds. M.A. Abrams, P.L.
Haigh, and J.C. Comfort, 61-70. IEEE,
Piscataway, New Jersey.

Gilman, A.R. and R.M. Watremez. 1986. A tutorial
on SEE WHY and WITNESS. In: Proceedings
of the 1986 Winter Simulation Conference, eds.
J.R. Wilson, J.O. Henriksen, and S.D. Roberts,
178-183. IEEE, Piscataway, New Jersey.

Gordon, R.F., E.A. MacNair, P.D. Welch, K.J.
Gordon, and J.F. Kurose. 1986. Examples of us-
ing the RESearch Queueing Package Modeling

Graphical Modeling Environments

Environment (RESQME). In: Proceedings of the
1986 Winter Simulation Conference, eds. J.R.
Wilson, J.0. Henriksen, and S.D. Roberts,
504-510. IEEE, Piscataway, New Jersey.

Gordon, R.F., E.A. MacNair, K.J. Gordon, and J.F.
Kurose. 1987. A visual programming approach
to manufacturing modeling. In: Proceedings of the
1987 Winter Simulation Conference, eds. A.
Thesen, H. Grant, and W.D. Kelton, 465-471.
IEEE, Piscataway, New Jersey.

Gordon, R.F., E.A. MacNair, K.J. Gordon and J.F.
Kurose. 1990. Hierarchical modeling in a graph-
ical simulation system. In: Proceedings of the
1990 Winter Simulation Conference, eds. O. Balci,
R.P. Sadowski, and R.E. Nance, 499-503. IEEE,
Piscataway, New Jersey.

Gordon, K.J., J.F. Kurose, R.F. Gordon and E.A.
MacNair. 1991. An extensible visual environment
for construction and analysis of hierarchically-
structured models of resource contention systems.
Management Science 37: 714-732.

Hurrion, R.D. 1986. Visual interactive modelling.
European Jowrnal of Operational Research 23:
281-287.

Kurose, J.F., KJ. Gordon, R.F. Gordon, E.A.
MacNair, and P.D. Welch. 1986. A graphics-
oriented modeler’s workstation environment for
the RESearch Queueing Package (RESQ). In:
1986 Proceedings Fall Joint Computer
Conference, 719-728. Dallas.

Melamed, B. and R.J.T. Morris. 1985. Visual sim-
ulation: the performance analysis workstation.
IEEE Computer 18: 87-94.

Miles, T., R.P. Sadowski, and B.M. Werner. 1988.
Animation with CINEMA. In: Proceedings of the
1988 Winter Simulation Conference, eds. M.A.
Abrams, P.L. Haigh, and J.C. Comfort, 180-187.
IEEE, Piscataway, New Jersey.

Pegden, C.D., Shannon, R.E., and R.P. Sadowski.
1990. “Introduction to simulation using
SIMAN”. New York: McGraw-Hill.

Roberts, S.D. and M.A. Flanigan. 1988. Simulation
modeling and analysis with INSIGHT: a tutorial.
In: Proceedings of the 1988 Winter Simulation
Conference, eds. M.A. Abrams, P.L. Haigh, and
J.C. Comfort, 180-187. IEEE, Piscataway, New
Jersey.

Shanmugan et al. 1988. Block-oriented network
simulator. In: Proceedings of IEEE Globecom ‘88
Conference, 1679-1684. 1EEE, Piscataway, New
Jersey.

1145

Standridge, C.R. and A.A.B. Pritsker. 1987. The
extended simulation support system. New York:
John Wiley & Sons, Halsted Press.

AUTHOR BIOGRAPHIES

KURTISS J. GORDON is on the staff of the Uni-
versity Computing Services of the University of
Massachusetts. His research interests include user
interface design for information systems with graph-
ical content. He is a member of ACM, IEEE, and
Sigma Xi.

ROBERT F. GORDON is manager of modeling and
analysis software systems at the IBM T.J. Watson
Research Center. His research interests are in the
areas of decision support systems and graphical en-
vironments. He is an adjunct professor in the Busi-
ness Computer Information Systems and
Quantitative Methods Department of Hofstra Uni-
versity.

JAMES F. KUROSE is an associate professor in the
Department of Computer and Information Science
at the University of Massachusetts at Amherst. His
research interests include computer networks, mod-
eling and performance evaluation, and real-time sys-
tems. Professor Kurose is the Editor-in-Chief of the
IEEE Transactions on Communication and Pro-
gram Co-Chair of the IEEE Infocom’92 conference.
He is a member of ACM, IEEE and Phi Beta
Kappa.

PAUL G. LOEWNER is an advisory programmer
in the Computer Science Department at the IBM
Thomas J. Watson Research Center. His interests
are in graphical systems, compilers, and mathemat-
ical analysis. He is a member of ACM, SIAM,
AMS, MAA, IEEE CS.

EDWARD A. MACNAIR is a Research Staff
Member in the Computer Science Department at the
IBM Thomas J. Watson Research Center. His re-
search interests are performance modeling tools and
simulation output analysis. He is a member of
ORSA, TIMS, and ACM, and was Proceedings Ed-
itor for the 1989 Winter Simulation Conference.

HAOJIN WANG is a Ph.D. candidate in the De-
partment of Computer Science at Texas A&M Uni-
versity. His research interests are design and
development of expert system and software engi-
neering in computer simulation.

