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ABSTRACT

A model-based autonomous system employs a mul-
tiplicity of models at various control layers to sup-
port the predefined system objectives. These models
differ in level of abstraction and in formalism. Con-
cepts and tools are needed to organize the models
into a coherent whole. We have developed abstrac-
tion mechanisms for mapping models of laboratory in-
struments into operational abstractions, and for map-
ping a task plan hierarchy into an isomorphic tree of
model abstractions. This paper deals with further ef-
forts to develop abstraction mechanisms for system-
atic derivation of related models through the use of
system morphisms. We describe an abstraction mech-
anism for abstracting spatial relations between the
model of external world and the internal world model
employed in an autonomous agent. We also show how
such a mechanism supports world modelling coher-
ence. Then we illustrate the integration of the world
modelling approach and abstraction mechanisms in
an autonomous multi-agent laboratory application.

1 INTRODUCTION

High autonomy is an extended paradigm that sub-
sumes both control and Al paradigms. Emerging
from the control field, intelligent controlis viewed as a
new paradigm for solving control problems. Based on
the concept of intelligent control, several autonomous
control architecture have been proposed to achieve
autonomy (Albus 1990a, Antsaklis et al. 1989, Saridis
1983). These architectures, from minimum three lay-
ers (management, coordination, and execution) up to
arbitrary layers depending on particular applications,
characterize the hierarchical use of control and infor-
mation at various layers. Zeigler and Chi (1990) pro-
pose a model-based architecture in which knowledge
is encapsulated in the form of models that are em-
ployed at the various control layers to support the
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predefined system objectives. The model-based ap-
proach recognizes that an autonomous system must
maintain models in a variety of formalisms and at
various levels of abstraction. Lower control layers are
more likely to employ conventional differential equa-
tion models with symbolic models more prevalent at
higher layers. A key requirement is the systematic de-
velopment and integration of dynamic and symbolic
models at the different layers.

The model-based autonomous system design is
based on the multifacetted modelling methodol-
ogy (Zeigler 1990) that employs a multiplicity of mod-
els oriented to specific objectives. These partial mod-
els are more computationally tractable, more under-
standable, and easier to develop than comprehen-
sive multipurpose models (Zeigler 1984, McRoberts
et al. 1985, Fishwick 1989a,b). Also the multiplic-
ity of abstracted models may provide an evolution-
ary path for the modelling process (Fishwick 1988,
1989a,b). Much recent research has recognized the
need for multiple levels of abstraction (Murthy and
Addanki 1987, Murthy 1988, Jokowicz 1989, Un-
ruh 1989) and good representations and ability to
change from one representation to another for effi-
cient problem solving (Benjamin et al. 1990, Keller
et al. 1989a,b). However, the proposed approaches
lack criteria for valid abstraction. Such criteria are
imposed by an explicit statement of the kind of mor-
phic relation to be preserved relative to the objectives
at hand. Sevinc (1990) developed a means to sup-
port automation of simplification of discrete event
models. The simplification approach is intended to
provide faster running lumped models rather than
more understandable models. However, abstraction
can provide both. Also this empirical approach does
not address the problem of maintaining consistency
of related models.

Figure 1 depicts the objectives oriented approach
to model development. Here, a relatively complex
simulation base model is abstracted into simplified
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models, oriented to planning, operation, diagnosis,
and other objectives. Such abstractions are based
on the homomorphic concept that a state correspon-
dence between base and lumped models must be pre-
served under transitions and outputs (Zeigler 1976,
1984). Morphisms differ in such details as the nature
of the state correspondence and the lengths of micro-
state transition sequences corresponding to macro-
state transitions. Choice of a particular morphism
establishes the criterion of validity for abstraction.
Generally, for an abstraction to be valid, it must pro-
vide as good an answer to the question of interest
as does the base model. In the objectives driven
methodology, modelling objectives lead to asking spe-
cific questions about the behavior of a real system
which in turn require the selection of suitable vari-
ables. Ultimately such a choice of variables leads to
formulating an experimental frame. Such an exper-
imental frame characterizes the circumstances under
which a model or its real system counterpart is to be
observed or subjected to experimentation. Thus, the
correctness of abstraction can be tested against the
base model by simulation in an experimental frame of
interest. The behavior preservation assesses the va-
lidity of abstraction relative to the objectives at hand.
Multifacetted methodology leads to multiple models
that need to be organized into a coherent whole. We
employ the system morphism concepts just described
for this purpose. Such morphisms connect models at
different levels of abstraction so that they can be de-
veloped to be consistent with each other and can be
consistently modified.
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Figure 1: Objectives oriented model development.
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We have developed a morphism class in DEVS-
Scheme for mapping models of devices such as lab-
oratory instruments to the operational abstractions
needed for event-based control (Zeigler 1989, 1990).
Such morphism abstraction supports model construc-
tion and model base consistency. DEVS-Scheme is
based on the DEVS (Discrete Event System Speci-
fication), a system-theory based formalism support-
ing hierarchical, modular model construction and ma-
nipulation (Zeigler 1984, 1990). The morphism class
forw—table-morphisms (Luh 1991) realizes the ab-
straction relationships from forward-models to table-
models two classes in DEVS-Scheme.

An instance of forw— table-morphismsnot only ho-
momorphically relates existing models, but also has
methods to actually construct a homomorphic ta-
ble model from the given forward model. We have
empirically verified correctness of the forw—table-
morphisms mapping by simulation. The morphism
instance is saved in the model base, and can be reac-
tivated to automatically regenerate the correspond-
ing table model whenever the forward model is mod-
ified. This ability greatly contributes to maintenance
of model base consistency.

Moreover, we have implemented the morphism
class, PES— table-morphisms (Luh and Zeigler 1991),
for systematic generation of table models for the
nodes of a task decomposition tree represented in
pruned entity structure, which is the result of prun-
ing, or extracting a hierarchical model specification
from a system entity structure (Zeigler 1990). A cor-
responding execution structure is formed with the as-
signment of controllers and supervisors, respectively
to the leaves and upper level nodes of the model tree.
Such an abstraction approach has been demonstrated
and tested in a model-based task-planning system for
a robot-managed space-borne laboratory.

This paper describes further efforts to develop ab-
straction mechanisms for systematic derivation of re-
lated models through the use of system morphisms.
We develop a morphism class for abstracting spatial
relations between world models, external and inter-
nal to an autonomous agent. This paper is orga-
nized as follows. Section 2 provides an overview on
endomorphic modelling of autonomous systems and
model base management concepts. In section 3, we
present the implementation of a morphism class for
world modelling abstraction. The testing of mor-
phism correctness is also discussed. In section 4, we
illustrate the application of the morphism class to an
autonomous multi-agent organization. Section 5 con-
cludes this paper and considers some directions for
future research.
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2 MODEL BASES OF AUTONOMOUS
SYSTEMS

To achieve realism, modelling of autonomous agents
must be able to represent not only their decision mak-
ing capabilities, but also the models on which such
capabilities are based, — and the methodologies for
building such models. Zeigler (1990) points out that
the use of internal models plays a key role for valid
representations of autonomous systems. Moreover,
simulation models of such systems must incorporate
external models of the same parts of reality in or-
der to be able to test how well that modelled agents
perform in their environment.

The model base of a high autonomy system may
contain models, internal and external to the agent’s
cognition system:

¢ internal models: These models are used to
model the agent’s decision making capabilities
for such interactions as operations, diagnosis,
planning, etc. along with its modelling capabili-
ties.

o external models: These models are employed
to model the environment in which the agent op-
erates, pieces of equipment the agent may oper-
ate, and its physical components such as motion
subsystem, whose time characteristics need to be
known for navigation.

Zeigler (1990) used the term endomorphy to refer
to objects (systems, models, agents) in which some
sub-objects use models of other sub-objects. An en-
domorphic simulation model might contain an agent
and environment such that the agent has, and uses, a
mode] of the environment and models of (parts of)
itself in its decision making. Such self-embedding
agents are termed endomorphic agents.

The approaches to model base management such as
entity-based partitioning and context-sensitive prun-
ing (Zeigler, Luh, and Kim 1990) and abstraction
morphisms discussed here help to organize the mod-
els employed in an autonomous system such as the
robot architecture in the space-borne laboratory (Fig-
ure 2). The entities possessing both internal and ex-
ternal models can be enumerated as follows:

e objects, including robots and instruments, have
external models for perception interactions.
Such a model represents how the object gener-
ates images in response to interrogations such as
robot visual inspection requests. Internal model
counterparts to these external models are orga-
nized into a classification system used by the
robot to identify objects,
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o instruments: each type of instrument is repre-
sented in internal models within an MPU in the
brain related to operation and diagnosis; an ex-
ternal model of an instrument is used to respond
to robot manipulations and to robot diagnostic
probes, and

e world map: the locations and orientations of ob-
Jjects are maintained within an external model of
space; correspondingly, each robot has an inter-
nal spatial map to help it determine the loca-
tions of objects it wishes to manipulate or avoid.
Such a world model also helps to plan the actions
needed to carry out an experimentation proce-
dure and to navigate from place to place. The
internal world map is a robot’s internal repre-
sentation of the external world (Albus 1990a,b,c,
Zeigler 1990, Roth-Tabak and Jain 1989), i.e., an
abstraction of the external world.

Each partitioned system entity structure (SES)
represents a chunk of reusable knowledge. The prun-
ing process will sew together the underlying SESs
piece by piece upon reaching those entities with asso-
ciated SESs. For example, to generate a laboratory
robot, the SES E:ROBOT will be plugged in to re-
place the entity ROBOT in the STR SES, and then
E:MPU will replace the entity MPU within the robot,
and so on. As illustrated in Figure 2, the VISUAL
MPU contains a world map and an object recognition
model. The world map model, SPACE-I, maintains
knowledge of locations and orientations of objects.
The robot consults its internal world map to locate
expected objects, to determine the travel path, and
to avoid collisions. Moreover, the overall spatial rela-
tions of objects, which are maintained in the external
model of space, SPACE-E, are updated whenever the
robot changes its location. Note that the external
model of space, SPACE-E, and its counterpart, the
robot’s internal world model, SPACE-I, are selected
by context sensitive pruning of E:SPACE. Organizing
the models by the entities they concern rather than
dispersed among the contexts they are used in facili-
tates model coherence and evolvability (Zeigler, Luh,
and Kim 1990).

3 WORLD MODELLING

As pointed out in (Albus 1990a,b,c, Meystel 1988,
Arkin 1989), the internal world model of an intel-
ligent, autonomous system should consist of hierar-
chical decompositions on various levels of abstraction
and resolution. World model knowledge at higher lev-
els of abstraction includes symbolic representations
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Figure 2: Entity structure base for an autonomous
space-borne laboratory.

of the work place, objects, attributes of objects, re-
lationships among them, events, etc. On the other
hand, knowledge at lower levels of abstraction might
be 3D cubic voxels (Roth-Tabak and Jain 1989 ,
Grant 1990) or 2D image pixels and image features
(Albus 1990b) such as lines, edges, surfaces, etc. The
latter knowledge is gained from perception of the en-
vironment by the autonomous system itself. In ad-
dition, some of the high level knowledge such as the
attributes of objects is interpreted from sensory data
at lower levels of abstraction.

In practice, the real world is rather complex. A
model of the real world may contains knowledge
about space, time, entities, events, temperature, hu-
mility, etc. In objectives driven modelling methodol-
ogy (Zeigler 1984), the modeller’s intended use of the
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model drives the process of model construction. Like-
wise, the agent’s intended use of its internal model
is a key consideration. A robot consults its internal
world model for object recognition, global path plan-
ning, and collision avoidance in our design. Thus the
spatial knowledge of objects need only be enough to
serve such purposes. In our modelling approach, both
the external model of space, SPACE-E, and the in-
ternal world model, SPACE-I, within a robot contain
the spatial knowledge of objects. The external model
of space represents the abstract real world in which
robots operate. To represent the internal and exter-
nal models of space, space-models, another sub-class
of atomic-models in DEVS-Scheme was introduced.

3.1 Space-Models

The class space-models provides an object’s identifi-
cation, location, and orientation in a form of tuple
in a relation, call the map. The entries are added
to it using the method assert as shown in Figure 3.
For stationary objects such as bottles which are put
or stacked up on top of other objects, the symbolic
location form (ON OBJECT) was introduced. For
example in Figure 3, the bottle is located at (ON
TABLE). When the entry is encountered, the bot-
tle’s location is inferred to be the table’s location for
numerical computation. This provides a means for
relatively inexpensive mapping of all objects. For ex-
ample, when a table moves, all objects on it retain
their descriptions.

(make-pair space-models ’space-e)

(send space-e set-s (make-state ’phase ’passive
’sigma ’inf
% ‘map (make-map)

;33 attributes: object location orientation

(send space-e assert-tuple

’(robot1 #(0 20) #(0 1)))
(send space-e assert-tuple

?(box #(0 30) #(1 0)))
(send space-e assert-tuple

>(table #(10 10) #(1 0)))
(send space-e assert-tuple

’(bottle (on table) #(.6 .8)))
(send space-e assert-tuple

’(robot2 #(100 100) #(1 0)))
(send space-e assert-tuple

’(robot3 #(30 30) #(1 1)))

Figure 3: The space model SPACE-E.

The underlying internal and external transition,
and output functions of space-models implement a
space engine. The space engine manipulates the map
for internal uses within an agent such as detecting
collision, checking neighborhood, and for external
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communication purposes such as locating influencees,
routing messages, computing relative orientation be-
tween objects, etc. The queries are serviced imme-
diately after the currently activated event whereas
the communication messages are delayed by the time
defined in the instance variable, delay-time. The con-
tent of external input event is a structure defined by:

(define-structure content port value source channel
echo-status)

In addition to the port-value pair, the slots, source
and channel are employed for specifying message ini-
tiator and channel, respectively. The external in-
put events that have non-null values in the channel
slot are treated as communication messages. Differ-
ent transmission media and sensory modalities are
modeled such as light and vision, pressure and touch,
etc. The user can apply the method input? to send
queries such as collide?, neighbors? to the space
model for detecting collision and checking neighbor-
hood, respectively. The entries of the map can be
displayed using the method show-tuples. For vi-
sualization, the method get-nearest-tuple finds the
object that is closest to and is located within the
line of sight of the seeing agent if one exists. The
method update-domain is basically applied to update
the internal world model’s! map given the changes
of external space model. Whenever an object moves
around, a movement event is sent to the external
space model. The latter records such events in a
motion-list. The method update-domain proceeds
in two steps. First, the internal world model goes
through the morphism instance specified in its state
variable, pre-image to find its counterpart external
space model, and sends a update request to the ex-
ternal space model. The latter responds to the re-
quest by checking the motion-list and passing back
the updated tuples, either moved within or out of the
agent’s working range. When such messages are re-
ceived, the internal world model asserts the move-in
tuples into, and retracts the move-out tuples from,
the map. Moreover, the update-domain method also
handles those objects that are put or stacked on top
of other objects. For example, if a table is moved
out of a robot’s working range, the objects on the ta-
ble are all out of range. Inversely, when the table is
moved in, so are the objects on the table. The class
space-models is shown in Figure 4.

14Internal world model” is a space model employed within
an agent. It is indeed an “internal space model”. Both terms
are used interchangeably without further distinction.
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Figure 4: Class space-models.

3.2 World Models Coherence

In an indoor environment such as a chemical labo-
ratory, the overall spatial relations of objects can be
predefined as a priori knowledge and stored in the
external model of space (Albus 1990a, Arkin 1989).
In our simulation experiments, every object sends its
location and orientation with identification to the ex-
ternal model of space as part of the initialization pro-
cess. This is a form of abstraction; only the spatial
knowledge of objects is extracted. Thus the external
model of space is homomorphic to the state of the
real world initially. The external model of space is
then updated by movements of robots and objects so
as to remain consistent with the real world.

For an autonomous system to exhibit intelligent be-
havior, it must be able to perceive the dynamics of
the environment. Albus (1990a) points out that per-
ception is the establishment and maintenance of cor-
respondence between the internal world model and
the external real world. That is, an autonomous
system’s internal world model is updated from per-
ception of the environment. An autonomous system
must contain sensory processing capabilities for in-
tegrating and interpreting information from multiple
sensors. Such capabilities, the focus of much cur-
rent research on sensor-based autonomous systems,
are treated at a high level of abstraction in our robot
model. Due to the possible limitations of sensors
and mobility, a robot may operate within a certain
range. Thus a robot’s internal world model can be
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initialized from part of the spatial knowledge in the
external model of space. In this way, the internal
world model is homomorphic to the external model of
space before the robot starts operation. If task tar-
gets are beyond a robot’s working range, the robot
can call for help from others via the ASSIS and OF-
FER MPUs (Zeigler 1990). As a side benefit, the ap-
proach to local focus reduces traffic in the laboratory
environment. Assume all of the sensors and sensory
processing facilities are satisfied, a robot should per-
ceive all the spatial changes in its local environment.
The updated world model is still homomorphic to the
external model of space, although they are updated
in different ways. Thus there is a space—map mor-
phism relation that exists between the external model
of space and the internal world model of a robot.
Note that the morphism relation is valid in the ex-
perimental frame that the robot has well-functioned
sensory processing capabilities to perceive all the spa-
tial changes within its working domain.

micro-state transition

BASE S sequence -
MODEL \_"0 ) ¥
H, : Hs
V
macro-state transition
LUMPED So- sequence S &
MODEL

(a) preservation of transition function

output function

output function’

(b) preservation of output function

Figure 5: Commutative diagrams of homomorphism.

3.3 Morphism Implementation

The implementation of morphisms is based on the
homomorphic concept that is depicted in the com-
mutative diagrams shown in Figure 5. In Figure 5a,
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we start the base model in one of the states Sy in a
restricted set. The homomorphic mapping H, yields
a corresponding state So/ = H,(Sp) in the lumped
model. We then inject an input sequence into the base
model and its corresponding version into the lumped
model sending them to the states Sy and Sy/, respec-
tively. These states also correspond under H,. In
Figure 5b, when the base model is in state S and the
lumped model is in corresponding state St = H,(S),
the output values observed in these states are y and
y!, respectively; the value y/ is also obtained by decod-
ing y under output mapping H,, that is y = H,(y).

space->map-
morphisms

space-
models

space-
models

instance variables:
~ pair-of-models
~ range
~ agent
~ location
~ orientation

methods:
~ derive-model
~ derive-map

Figure 6: Space to map morphisms class.

Based on the object-oriented program-
ming concepts, we implement the morphism class,
space—map-morphisms (Figure 6). From such a mor-
phism class we can generate various instances, each
mapping one space model to another space model,
e.g., from the external model of space to an internal
world model within a robot. The homomorphic map-
pings H, and H, are implemented by essentially ab-
stracting the spatial knowledge of the external model
of space into a subset within the working range of the
agent of the internal world model. The range is held
in the instance variable, range. The instance variable,
pair-of-models records the pair of models that are re-
lated by the morphism instance. The lumped space
model is employed within the agent specified in the
instance variable, agent. The location and orientation
of the agent are held in the instance variables, loca-
tion and orientation, respectively. For example, the
instance, SPACE-SMM, is constructed in Figure 7.
The space model, SPACE-], is created for its agent
located at #(0 20) from the given external model of
space, SPACE-E, using the method derive-model.

The method derive-model not only implements the
homomorphic mapping H, in Figure 5a, but also
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(mk-ent space-map-morphisms space-smm)

(send space-smm set-pair-of-models ’(space-e space-i))
(send space-smm set-agent ’robot1)

(send space-smm set-location #(0 20))

(send space-smm set-orientation #(0 1))

(send space-smm set-range 20)

(send space-smm derive-model)

Figure 7: A space—map-morphisms specification for
models of SPACE.

actually constructs a homomorphic internal space
model from the given external space model. The
other method, derive-map implements the homomor-
phic mapping H, only, that is, compute domain
within range for existing internal world model from
its counterpart external space model.

3.4 Testing The Implementation of Space-
models and Morphisms

To ascertain whether our implementation is correct
we generate cases to test the preservation of transition
and output functions. For this, we use a test macro:
(test (string)
(ap (sequence of operations to external space
model)) or (Value-1)
(ap (sequence of operations to internal world
model)) or (Value-2)
)
This will print out
(string): SATISFIED

If the 2nd and 3rd arguments turn out to be equal,

and
(string): NOT SATISFIED

otherwise.

The test macro is essentially intended to test the
set equivalence of map entries, thus a same-set pro-
cedure is employed if the 2nd and 3rd arguments are
represented in the form of list; otherwise the primitive
equal? procedure is used instead. The macro ap (for
apply) is used to evaluate a sequence of expressions.

In our modelling approach, the movement of an ob-
ject results in a message of the object’s new location
and orientation with identification passing to update
the external model of space. The latter records these
messages in a motion-list that represents the input se-
quence to the base model we mentioned above. Later
on, when a robot consults its internal world model to
avoid collisions and to determine neighborhood, the
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WORLD MODEL' y

(b) preservation of output function

Figure 8: Implementation of the space—map-
morphisms Mapping.

internal world model must first update itself, by look-
ing through the motion-list of its counterpart exter-
nal space model for those that are effective within its
domain. The space-models method, update-domain
performs this operation by evaluating the morphism
instance specified in the state variable, pre-image.
This depicts the way we model the corresponding in-
put sequence that is gained from perception of the
environment by the robot itself in practice.

Now let’s associate the input sequence and meth-
ods with the commutative diagrams of Figure 4, the
resulting diagrams are shown in Figure 8. In Fig-
ure 8, we start to apply the derive-model method to
an instance of space—map-morphisms that maps the
external space model in state Sy to a newly gener-
ated lumped internal world model in the correspond-
ing state Sp/. Then the input sequence motion-list
brings the external space model from state Sy to state
Sy. On the other hand, the space-models method,
update-domain derives the corresponding input se-
quence that brings the internal world model from
state So/ to state Sy/. Meanwhile, we can apply the
method derive-map to the space—map-morphismsin-
stance that maps the state S; of external space model
into a lumped state Sy/. To test the states S;/ and
Sy are equivalent, we use the test macro:
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(test “preservation of transition function”
map-1
map-2

)

Where map-1 represents the set of map entries of the
internal world model in state Sy/ while map-2 denotes
the set of map entries in state Sy/. The agreement
lends support to that Sy/ and S/ are equivalent.
This satisfies the preservation condition of commu-
tative diagram that all paths with the same starting
and ending nodes produce identical results.

To test the preservation of output function, we em-
ploy the space-models method input? to interrogate
the external model of space and then apply the func-
tion compute-domain (i.e., space—map mapping H,),
the observed output is the same as sending the queries
to the robot’s internal world model in a correspond-
ing state (Figure 8b). To perform the tests, we use
the macro:

(test “preservation of output function: query”
(ap (content-value
(send space-i input? source query)))
(ap (compute-domain
(content-value
(send space-e input? source query))
location range))

)

where source is the agent of the internal world model
and query can be either neighbors? or collide? for
checking neighborhood and detecting collision, re-
spectively.

The test results clearly indicate that our implemen-
tation satisfies the preservation conditions. Through
the use of space—map-morphisms, we can derive a
subset of the external model of space for use as an
internal world model of an agent. Although the in-
ternal and external models of space are updated in
different ways, the external model of space remains
homomorphic to the internal model of space. This
maintains consistency of related models of space.

4 APPLICATION TO MULTI-AGENT
AUTONOMOUS ENVIRONMENT

This section shows how our modelling approach and
morphisms support world model coherence in multi-
agent environment such as the robot-managed space-
borne laboratory (Zeigler, Cellier, and Rozenblit
1988). First , we consider the approaches to update
the internal world models.
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4.1 Update of Internal World Model

In our modelling approach, we have made a strong as-
sumption that sufficient sensory information is avail-
able for the agents to identify objects and their move-
ments in the agents’ local environment. As we dis-
cussed above, an internal world model once generated
can be updated in two different ways. One is applying
the space-models method, update-domain directly to
the internal world model; the other is applying the
space—map-morphisms method, derive-map to the
underlying morphism instance. Now the question is:
which one is more efficient than the other in terms of
the numbers of updated tuples and associated oper-
ations? And what are their applicability and limita-
tions?

First, let’s consider the case in which a number of
objects move around and the agent of internal world
model remains stationary. In this case, the update-
domain method that extracts the spatial changes
within certain domain from the external motion-list
is more efficient because only part of the changes are
taken into account, not the total number of objects in
the environment. But what happens if the agent it-
self moves around? There might be some movements
of objects before or when the agent moves. Moreover,
as the agent travels, some stationary objects are rel-
atively moved in or out of its domain from the view-
point of the agent. Since these objects are globally
stationary, their movements are not in the external
motion-list. This excludes the use of update-domain
method. Instead, the derive-map method allows the
agent to compute its new domain at the origin of the
new location.

In summary, to update the internal world model,
when the agent is stationary, the space-models
update-domain method is more efficient than the
space—map-morphisms method derive-map. On the
other hand, when the agent itself moves around, the
latter is preferable to the former.

4.2 Multi-agent Organization

Now let’s consider a multi-agent organization in
which each agent employs an internal world model
generated from a space—map-morphisms instance.
Meanwhile, there is an external space model that
maintains the spatial relations of the agents and ob-
Jects that the agents may operate. (Actually the ex-
ternal space model can be viewed as an internal world
model within a super-agent that employs the multi-
agent organization. Once again this is an endomor-
phic agent.) As we mentioned above, when an agent
or object moves around, it sends a movement mes-
sage with its identification, new location and orien-
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tation to update the external space model. The lat-
ter keeps these messages in a motion-list. Later on,
other agents can go through their underlying mor-
phism instance to access these information in order
to update their own internal world models. From
this point of view, the external space model acts as a
blackboard for exchanging spatial information. The
traveling agents post their movement messages on
the blackboard, and then other agents that need spa-
tial knowledge take whatever new and interesting to
them. Since there are multiple accesses to the black-
board, extra eflorts are needed to ensure the message
version control. An additional lot, version-counter
was introduced to each entry in the world map as
well as in the motion-list in order to keep track of its
update. By checking the version number, an agent
can distinguish what messages are new to it. The
blackboard approach to exchanging information was
typically used for cooperative problem solving in dis-
tributed artificial intelligence research (Fennell and
Lesser 1977, Lesser and Erman 1980).

For the traveling agent itself, when reaching its des-
tination, the navigation component, i.e. the NAV-
IGATOR MPU (Zeigler 1990, Zeigler, Cellier, and
Rozenblit 1988), must inform the internal world
model of the agent’s new location so that a new
map is derived through the underlying space—map-
morphisms instance. Thus, at each observation time,
the multiple agents, either stationary or just traveled,
can maintain coherent internal world models relative
to the global spatial relations of the environment.

5 CONCLUSIONS AND FURTHER
RESEARCH

Based on the concepts of system morphisms, we have
implemented abstraction mechanisms for systematic
derivation of related world models, external and in-
ternal to an autonomous agent. Such a modelling
and abstraction approach has been demonstrated in
multi-agent autonomous environment.

However, to enhance the model coherence, we must
ensure the consistency of the motion events posted by
agents and perceived by others. For example, we need
to deal with the situation that there are some other
agents in motion at the observation time while an
agent is updating and consulting its internal world
model. Also, for realistic applications, we need to
extend the world model representation to multiple
levels of abstraction, such as more local details for
gross and fine motion planning.

To achieve a multi-formalism, multi-abstraction
model-based systems design, we need to provide more
morphisms for model abstractions in various for-
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malisms. Moreover, tools are needed to assess the
validity of abstractions relative to the given objec-
tives. Zeigler (1976) presented an approach to this
issue using experimental frame concepts. Further re-
search is needed to create such tools.
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