Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

THEORIES OF DISCRETE EVENT MODEL ABSTRACTION

Suleyman Sevinc

Department of Computer Science
University of Sydney
NSW 2006 AUSTRALIA

ABSTRACT

It is known in systems science that many consistent
models at different levels of detail exist for a given
modellee. Model abstraction is concerned with identi-
fying relationships between such models and with
processes of deriving more abstract ones from more
detailed ones. This article critically examines possi-
bilities for a formal basis of model abstraction and
possibilities for procedures to perform model abstrac-
tion.

1 INTRODUCTION

1.1 What is Model Abstraction?

What can be said about the relationships' between the
users’ and the technical manuals of a computer sys-
tem? Obviously, they both must represent the same
system at different levels of detail. Similarly, discrete
event simulation models may be simplified or made
more detailed for a less detailed/detailed analysis of
the system being studied. Consider a computer net-
work model. For a detailed study such a model may
be so constructed that it simulates processing of every
bit, e.g., transmission of every bit would be a separate
event. The same model may be simplified in such a
way that the resulting simplified model may only
simulate packet level events, e.g., instead of simulat-
ing transmission of every bit the new model simulates
transmission of every packet which is a sequence of
bits. When two such models represent the same reality
at different levels of detail, the one with less detail is
said to be more abstract than the other. In the example
above, the model with events at packet level is a more
abstract one.

It is important to note that truly abstract models
will not, in general, produce the same exact behavior
as their more detailed equivalents. This is due to some

1. see Wymore, 1986

1115

knowledge loss in the process of abstraction. In the
case of the above example, a computer network model
operating at packet level would generate a slightly dif-
ferent behavior from the one operating at bit levels. In
general, any event that happens which requires time
scale smaller than that of a packet, such as collisions
during he transmission of a packet, could only be
represented with some approximation. If a more
abstract model generates a behavior which is close
enough to that of its more detailed counterpart, it
should be a valid abstract model. Unfortunately,
however, being close enough in behavior has not been
defined for discrete event models and therefore the
previous sentence needs to be explained.

Both Foo (1974) and Zeigler (1976) indicate that
the model abstraction relationship preserves some
essential features of the original model. In other
words, while certain parts of the model are kept invari-
ant other parts are changed somewhat arbitrarily.
Parallel to this, the behavior of the model also shifts
around the parts that stay unchanged (or changed
slightly). This may be a satisfactory explanation when
considering pairs of models but may not explain the
validity of more abstract models relative to the origi-
nal model. In this article, we will not attempt provid-
ing an exact definition for model abstraction term.
Instead, we will explore issues that we think will be
helpful in understanding model abstraction.

So far in our discussion the abstraction relationship
is restricted to be between discrete event simulation
models. Discrete event simulation models are typi-
cally designed to replicate the behavior of their real
counterpart and by definition are dynamic and show a
time dependent behavior. There are, however, other
types of abstractions from discrete event system
models to causal models or to qualitative models.
Such models still preserve some essential features of
the discrete event models that they were derived from,
but they are slightly different from discrete event



1116

models in spirit.

1.2 Why Model Abstraction?

Model abstraction, in general, serves two purposes;
a)it increases our understanding of models and model
behavior b)it may provide us with computationally
more efficient models of systems we study. Model
abstraction, although done by modellers quite often, is
not a very well understood subject. We can identify
abstract models in straightforward cases such as in the
computer network example used before. By straight-
forward we mean the abstraction relationship is clear
which in that case is packets vs. bits. The question
"are there intermediate abstract models between bit-
level and packet-level models?" is a legitimate one and
the answer would be of great intellectual value.

1.3 The Previous Work on Model Abstraction

There is not a huge literature on model abstraction, at
least not in the way we describe it in this article. Innis
and Rexstad (1983) identify a number of simplifica-
tion techniques and provide some useful insight to
simplification and its procedures. They suggest that
brevity, transparency and efficiency as three criteria
for simplicity. They also provide a guide to be used in
simplification. While their research is interesting in
that it may help a modeller to go about simplification
in a somewhat formulated way, they do not attempt
formalizing simplification.

Fishwick (1988) also proposes a number of
methods for abstracting processes. These methods
combined with definitions of a process at different lev-
els is suggested to form a partially ordered graph
called an "abstraction network"” which in turn is used
to study the model behavior at different levels of
detail. A simulation environment HIRES is reported
to have been developed to support this process.

Courtois (1985) presents an intuitive argument
about reducing complexity of systems in order to be
able to study their behavior more efficiently. Several
arguments are raised about situations which may be
delicate to simplify.

Simplification finds its formal roots, as we under-
stand it, in systems theory. Wymore (1986) concen-
trates on the question of (notation independent)
equivalence between systems. He describes
homomorphism as the basis for such a relation and
considers homomorphic images of systems as con-
sistent simplifications. Foo (1974) also maintains that
homomorphism as being the formal basis for

Sevinc

simplification. He raises the question of validity of
simplification procedures. He proposes that validity
of simplification procedures be determined in terms of
properties to be preserved. He also raises several
interesting issues such as conversion between stochas-
tic and deterministic systems and approximate
homomorphisms

Zeigler (1976) is similar to Wymore’s and Foo’s
approach. In later sections, his approach will be stu-
died more carefully.

Sevinc (1990a) is based on a modified definition
of homomorphism and describes a set of programs that
generate simplified versions of models from simula-
tion runs.

2 THEORIES OF MODEL ABSTRACTION

2.1 What is a Theory of Model Abstraction?

Model abstraction identifies a relationship between
two models. A theory of model abstraction is a well-
defined formal expression of what such a relationship
is. It does not attempt identifying ways of abstracting
models. Given two models, the theory should tell
whether they are related via this abstraction relation-
ship or not.

2.2 Possible Theories of Model Abstraction

Wymore (1986) proposes homomorphisms as a formal
basis for model abstraction. Zeigler (1976) also sug-
gests homomorphisms as a formal basis. Zeigler’s
argument is based on his theory of discrete event sys-
tems (DEVS). A single component DEVS is
described as following;

M=<XaY.57 5¢m80'7~,‘a>

where, X, Y and S are input, output and state sets,
respectively. In DEVS, another component Q, called
the total state set is used. The total state set associates
the interval [0, 1,(s)] with each s in S, where ¢, is the
time advance function, which maps S to the non-
negative real number set including infinity. A is the
output function which maps Q into Y. The transition
function is modularized into external and internal tran-
sition functions. The external transition function maps
the Cartesian product of Q and X to S. The internal
transition function is defined from S — S.

M=<XM'SM‘ YM' SM. AM JM>
and



Discrete Event Model Abstraction

M'=<Xp, Spt, Y, Om: Mag, >

both legitimate DEVS models, where
Xu=Xpr,

Yy=Yun

A DEVS homomorphism from M to M’ is a map h
such that

1) h:Sy—>Sy-(onto)

2) h Bum(s.e,x))=dp(h (s) ,e,x)
3) Mg (h(s) .€)=hp(s.€)

4)h @um,0(5)) =dp, 0 (h(5))

5) tamr(h (s)) =ta (s)

where xe X and (s,e) € Qy

Zeigler in fact proves that this definition of
homomorphism preserves behavior, however, it can
not fully account for abstraction in the way we under-
stand it. Consider the computer network example
from the previous sections. Typically a sequence of
states lumped together to extract packet-level behavior
which would require adding of time advance values
for microstates to extract the time advance value for
more abstract packet-oriented states. The definition of
homomorphism completely rules this out. Many times
mapping of time advance values involves an inter-
mediate function which takes time advance values of
microstates in and generates a new time advance value
for the abstract state.

Sevinc (1990a) proposes a weakened definition of
homomorphism to be used as a formal basis for model
abstraction as briefly explained in the following:

1) h:Sp;—Sy-(onto)

2)8'(h(s),e,x)=h(8(s,e,x))
with p, .(h(s),h(8(s,e,x)))) >0

3) Mg (h (s) &) =My (s,€) with p;>0
4)8'(h(5))={h (8(s)) with p (h(s),h(&(s)))>0}

5)ta(h(s))=U{t,(s") 1h(s)=h(s) and
for every s, t,(s)2t,(s),

1117

t,(s") lh(s")=h(s) and for every s,
1a(8) St,(s") ]

Where xeX and (s,e)€Qy. pr.(s1,52) and p; are
probabilities computed from the observations of the
behavior of the original model. ’h’ lumps a number of
states together, therefore in order for the simplified
model to make a transition from one state to another
the original model must have done such a transition
during the observation period. This fact is stated in
item 4 above by requiring a non-zero probability for
such a transition. Since a number of states are lumped
together in the simplified model, a number of outputs
are possible at a particular simplified state. This con-
flict is resolved using p, in item 3 above. For external
transitions of the simplified models similar probability
values are used from the observations except that they
are conditioned on the type of input and elapsed time
values which are also simplified. Time advance
values for simplified models are approximated using
random values distributed uniformly over the values
between the minimum and maximum time advance
values which are mapped to a particular simplified
state.

Basically, the existence of a detailed model is
assumed and observed in an experimental frame on the
basis of which the simplified version is constructed.
Typically, a modeller starts with step 1 by defining an
’h’. What needs to be achieved is P(I=(q, ®) -
Z'(h(q), w) <e} >, foreveryqe Qandwe Q; =
and =’ are either state or output trajectories of the ori-
ginal and the lumped models, respectively. The
modeller may have to try several h’s before he can
ensure the above inequality for 8 and € values he
chooses.

This weakened definition of homomorphism still
suffers from the same symptoms as strict homomor-
phism does. Even if we allow the use of an intermedi-
ate function for time advance values such as f(s1,..,sn)
where h(s;)=S, the definition still is not able to account
for a wide variety of cases. Consider the computer
network example used before. The abstraction is not
done in a way that a set of micro states are mapped to
an abstract state but a sequence of states is mapped to
an abstract state, i.e., a packet transmission
corresponds to transmission of a sequence of bits.
Therefore, abstraction relationship should include this
possibility in its definition. In fact many different
sequences would qualify to be a packet, thus a packet
referring to a set of microstate sequences each one
with possibly distinct features. For example the total



1118

time required to transmit a packet may vary from
packet to packet although this time may be fixed for
individual bits. Furthermore a packet transmission
may have to be incomplete due to some factors such as
congestion. Therefore, the definition of abstraction
relationship should allow inferring time related proper-
ties of packets from what has been observed from
simulation runs at bit level. An observation about
time dependent behavior of more abstract models
shows that more detailed models have a finer time
scale, that is they have to process more events to cover
the same period of simulated time. In fact this may be
part of the definition of an abstraction relationship.

Another observation of abstract model behavior
reveals that their inputs and outputs also have to be
lumped together towards more abstract input and out-
put events. This might eventually affect the
input/output compatibility assumption made in Sevinc
(1990a) such that abstraction of a part of a system may
necessitate abstraction of the rest of the system for
compatibility.

The conclusion of this section is that a globally
valid definition of abstraction is lacking. We are not
able to define abstraction in its most general sense at
the moment. In the limited context of the computer
network example used above; if a procedure can be
defined to derive the protocols of a computer network
from its models operating at bit levels then it should
be considered a true abstraction. At least, this is the
sense in which we are trying to study the concept of
model abstraction.

3 PROCEDURES FOR MODEL ABSTRACTION

3.1 What is a Procedure of Model Abstraction?

A procedure for model abstraction is basically an algo-
rithm describing how to derive more abstract models
from more detailed simulation runs. This is a bit dif-
ferent from constructing state machines from their
input/output behavior in that an abstraction procedure
typically has access to states and state changes of the
detailed models it operates upon. You may be ponder-
ing, "How it is possible to construct a procedure for
something we do not have a precise definition for?".
Consider the field of induction or belief revision where
the subject is only partially understood but many pro-
cedures have been developed to operate under various
restriction. Abstraction procedures are much like that;
they make use of the partial knowledge we have about
abstraction and therefore they are partial solutions that
are valid for subclasses of abstraction under specific

Sevinc

assumptions. In fact, I would go a step further and
suggest that the procedures themselves sometime may
not be well-understood and it should not prevent us
from experimenting with them. As in the fields chem-
istry and physics, sometimes theories follow the
laboratory experiments. Therefore, it makes sense to
talk about procedures for model abstraction at this
stage.

3.2 Procedures for Model Abstraction

The most straightforward theory-based partial abstrac-
tion procedure would be generating homomorphic
images from model specifications. Take Zeigler’s
definition of homomorphisms as an example. If we
can identify group of micro states with equal time
advance values, transition and output characteristics
we could construct a notationally independent machine
which would be a more abstract model. Surprisingly
enough, although the procedure is simple enough, no
one, to my knowledge, has experimented with such a
procedure.

Another procedure described in Sevinc (1990a)
which requires an initial knowledge of mapping
characteristic sets of a model to more abstract ones. A
set of agents then observe the model behavior to deter-
mine the transition, output and time characteristics of
these abstract states. A code generator generates a
model expressed in a canonical form. Experimental
results show that the simplified models reduce the
simulation run time considerably while preserving the
behavior within certain limits. The limitation of the
procedure is that it does not have the ability to identify
more abstract models without an initial knowledge
which must be provided by the modeller. The pro-
cedure is the first attempt we know of to automate the
model abstraction process.

A second abstraction procedure is reported in
Sevinc (1990b). The procedure extracts logical state-
ments from discrete event model states. The logical
statements derived for adjacent states, i.e., related via
transition, are used to identify events by measuring
their differences in terms of statements turned on and
turned off. A planning algorithm is then used to
answer queries about simulation model behavior. The
procedure abstracts simulation models to a logical
model where the power of deduction and planning is
used. This is not an abstraction process whose out-
come is an executable discrete event simulation model.
Logical equivalents of discrete event models then can
be used to learn and reason about the simulation model
behavior.



Discrete Event Model Abstraction

Perhaps the most interesting procedure described
in the literature is the one described in Sevinc and Foo
(1990). The procedure assumes the existence of a
database which stores distances between states of a
model. The assumption is that the closer the states to
each other the more likely it is that they are semanti-
cally similar. In reality, similar states are likely to fol-
low each other when the change is not a dramatic one.
The method uses a classification technique to find
clusters of microstates and each cluster is represented
by an abstract state whose properties are derived from
those of the micro states in the cluster. A second part
of the algorithm is aimed at error correction. It is
recognized that clustering algorithms may occasion-
ally misplace the micro states. The second part of the
algorithm, using the transition characteristics of the
micro states and clusters, locates such misplacements
and attempts placing these micro states in clusters
which more closely match their transition characteris-
tics. The success of this procedure heavily depends on
the distance metric used to measure the distance
between micro states. The strength of the method is
that it is fully automated and that it is capable of gen-
erating abstract models at any desired level. Further-
more, it can also address the case where a sequence of
micro events being mapped to an abstract event in a
limited way. It is also capable of generating abstrac-
tions that may not have been foreseen by the modellers
themselves.

4 CONCLUSIONS

Model abstraction is frequently done by modellers
when the complexity of their models exceed the power
of their resources, i.e., too much space or time would
be taken by simulations. It is the responsibility of
simulation methodologists to propose sound ways of
generating more abstract models from more detailed
ones. Model abstraction also serves the purpose of
learning more about model behavior and inferring pro-
perties that otherwise may remain uncovered. No
complete theories of model abstraction exist, nor does
any sufficiently general procedure. The field, with
only less than half a dozen published articles, is wide
open inviting the attention of simulation methodolo-
gists.

5 REFERENCES

P.J. Courtois. 1985. On Time and Space Decomposi-
tion of Complex Structures. Communications of the
ACM, Vol. 28, No. 6, pp. 590-603.

P.A. Fishwick. 1988. The Role of Process Abstraction
in Simulation. IEEE Transactions on Systems, Man
and Cybernetics, Vol. 18, No.1, pp. 18-39.

1119

N.Y. Foo. 1974. Homomorphic Simplification of Sys-
tems. Doctoral Dissertation, University of Michi-
gan.

G. Innis, E. Rexstad. 1983. Simulation Model Simplif-
ication Techniques. Simulation, July, pp. 7-15.

S. Sevinc. 1990a. Automation of Simplification in
Discrete Event Modelling and Simulation. Interna-
tional Journal of General Systems, 18, No. 2.

S. Sevinc. 1990b. Extracting Logical Theories From
DEVS Models, Tech. Rept. 377, Basser Dept. of
Computer Science, University of Sydney.

S. Sevinc and N.Y. Foo. 1990. Discrete Event Model
Simplification via State Classification. In: Al and
Simulation Theory and Application, edited by W.
Webster and R. Uttamsingh, SCS, pp.211-216.

AW. Wymore. 1986. A Mathematical Theory of Sys-
tem Design. SANDS, Tucson, Arizona.

B.P. Zeigler. 1976. Theory of Modelling and Simula-
tion. John Wiley, New York.

6 AUTHOR BIOGRAPHY

SULEYMAN SEVINC is a lecturer in the Depart-
ment of Computer Science at the University of Syd-
ney, Australia. His research interests are model
abstraction and theory-based modelling environments.



