Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

AN APPROACH TO INTEGRATING AND CREATING FLEXIBLE SOFTWARE
ENVIRONMENTS SUPPORTING THE DESIGN OF COMPLEX SYSTEMS

Kirstie L. Bellman

Computer Science and Technology SubDivision
The Aerospace Corporation
Los Angeles, California, 90009-2957

ABSTRACT

Engineers and scientists are attempting to represent,
design, analyze, and reason about increasingly com-
plex systems. Because of the complexity of these sys-
tems, no single analysis, model, approach, or view-
point is sufficient. Such complex systems require not
only the availability of a variety of analysis tools,
knowledge bases, databases, and programs of all
sorts, but also a framework within which these differ-
ent programs, types of information, and viewpoints
can be brought together. Software developers have
responded to these needs by introducing the concept
of a software “environment.” In an environment, the
user has access not only to a large number of differ-
ent “tools” (e.g. analyses, editors, other programs),
models, and databases, but often a number of “util-
ities” and features in the environment that make it
easier to go from one tool or model to another. Often
these environments have a diversity of knowledge rep-
resentations (procedural code, equations, text, rules)
and languages. Many environments are extendable in
at least a limited manner to the languages and infor-
mation styles already available in the system. How-
ever, new languages and representations are being de-
veloped continuously for very good reasons: as with
mathematical formalisms, a good language can make
certain problems easy to do.

Many researchers have been developing new ways
of creating increasingly open environments (See Pur-
tilo et al., as one example). In our research on VEHI-
CLES, a conceptual design environment for space sys-
tems, we have been developing an approach to flexi-
bility and integration based on the collection and then
processing of explicit qualitative descriptions of all
the software resources in the environment (Bellman
and Gillam, 1990; Landauer, 1990). The detailed de-
scriptions (or metaknowledge) of the resources are
used by the system to help partially automate the
combination, selection, and adaptation of tools and

1101

models to the particular requirements of the user and
the type of problem being solved.

1 INTRODUCTION

The present challenge in much of science and engi-
neering is to learn how to represent (model), design,
develop, analyze, manage, and operate complex sys-
tems. Complex systems have some of the following
characteristics: a large number of parts; different
kinds of parts; different behavioral levels (different
levels at which the system can be meaningfully ana-
lyzed or controlled); and emergent qualities (the be-
havior of the system globally is not fully derived from
knowing the behavior of individual components). Ex-
amples abound: managing a product over its lifecy-
cle; developing a new space system; reengineering a
car; improving the quality in a service organization;
designing a new building; and conducting a scientific
study.

Because computer models and software support are
essential to the ability to analyze and utilize complex
models, it is no surprise that computer science and re-
lated fields have become the focal point for attempts
to understand and handle complex systems. One of
the first things we learned about supporting the de-
sign and analysis of complex systems is that no sin-
gle viewpoint, approach, model, or analysis (however
broad or good) will be sufficient to design, develop,
understand, or manage a complex system. A design
environment must provide a variety of models, anal-
yses, software tools, and types of information. This
imposes on such software environments the dual re-
quirements of providing the flezibility necessary to
handle a diversity of tools and information types and
the coordination necessary to integrate, monitor the
interactions, and interpret a diversity of software re-
sources in order to obtain both desired and consistent
system behavior. In this paper, we examine the types
of flexibilities and integrative processes necessary to a



1102

design environment, especially the services available
in an environment to help the user select, integrate,
adapt, and explain the software resources in that en-
vironment(intelligent user support functions), our ap-
proach to providing these services by the processing of
explicit descriptions of the software resources (wrap-
ping) and VSIM, a simulation we built to study the
nature of the wrappings, wrapping processors, and
different software architectures.

2 COORDINATION AND FLEXIBILITY

The VEHICLES environment is composed of both
conventional and artificial intelligence methods and
programs. It is a distributed, multilingual environ-
ment that is largely written in Prolog, C and C++,
but also supports external programs written in sev-
eral languages. It supports many types and sources
of information and knowledge, multiple models, and a
broad toolchest of analyses, graphics, and other types
of software programs. Although it is a prototype en-
vironment, in its four years of development it has
been used to provide some of the analyses supporting
several space programs.

The capabilities and types of information required
in VEHICLES are numerous, varied, and complex.
Designers and planners of space systems take many
different approaches and may work at different lev-
els. Mission requirements, technological advances,
and constraints on cost or other resources all influence
design decisions. Consequently, design tools must
be flexible enough to allow the designer to focus on
different levels of detail and on different aspects of
the problem; an important part of design is know-
ing what to consider a factor and what to consider
a constraint at any given time in the design process.
VEHICLES allows designers to address many differ-
ent design problems, from the definition of mission
requirements to scheduling issues related to the effec-
tiveness of environmental testing. As sets of possible
design solutions are generated, the user can compare
designs and evaluate their relative merits. VEHI-
CLES has taken a significant step toward speeding
up the creation of families of viable designs, rather
than primarily focussing on the analysis and perfor-
mance of single-point solutions.

We can summarize these flexibilities into three
broad areas. First there are analyses that support
the user in performing trade-offs, in deciding what
the critical factors are in designing a system, and in
relaxing the requirements and studying the impact
of different sets of requirements and constraints. In
other words, rather than just providing analyses and
models that operate on the basis of a fixed set of

Bellman

constraints, we want to support the user’s ability to
understand and characterize the space of possible so-
lutions.

Second, we want to make each feature of a model a
variable. That way, the users can explicitly examine
the impact on their design or study of using different
models, different sets of constraints, different numeri-
cal routines, different approaches or design strategies,
and even different user models. We support this in
Vehicles by providing a library of models, often with
several alternative versions that can be compared,
and a toolchest composed of many different types of
analyses. We allow the user to start anywhere in the
design. For example, a user can adapt a previous de-
sign, start top-down by interpreting broad mission re-
quirements for a new satellite, focus initially on sizing
a subsystem and assessing its impact on other subsys-
tems, or start with a new technology for a component
and study its effect on different systems. Also, the
system will process with partial results and missing
information, and will provide intelligent defaults for
initial factors to consider, parameter values and op-
tions. Some of the continuing research challenges in
providing this type of flexibility is to process with
incomplete information, to provide models at differ-
ent levels of detail and precision and with alternative
assumptions, and to combine qualitative and quanti-
tative information.

Third, all of these tools and models were not de-
veloped in the same language, on the same platform,
or by the same authors. Hence, at a network level,
we have found that the system needs to be multilin-
gual, distributable over different platforms, and both
extendable (can add new instances of known types)
and open (can add new types of programs, functions,
and operations).

However, each of these flexibilities noted above re-
quires some active coordinative processes to manage
the diversity of features provided. By coordination,
we mean the organized activities of parts in relation-
ship to global goals. In order to help coordinate the
models of a complex system and the supporting soft-
ware resources in a software system, we need to pro-
vide: (1) perspective (providing both representations
that present different overviews of the whole system
and representations that permit a number of differ-
ent subjective views); (2) interface (providing low-
level protocols); (3) integration (providing informa-
tion and processes to help determine the conditions
under which tools or models should be interfaced);
(4) overhead (providing sufficient information in a
processible form so that the system can monitor in-
teractions and interpret and evaluate its results and
resources.) The distinction we want to make between



Supporting the Design of Complex Systems

“Interface” and “integrate” is essentially the differ-
ence between providing the permissive and essentially
static capability that establishes that two tools can
exchange bytes (interface) and providing the capabil-
ity for the system to dynamically determine when two
tools should exchange information (integrate).

Intelligence in a complex system costs - both in
terms of the types of information that must be avail-
able and the types of processes necessary to make
use of it. In a biological system, adaptive, intelligent
behavior includes the ability of the system to some-
how see itself within a context, monitor and evaluate
its own and others’ behaviors, and adjust and refine
its behavior as required by criteria (or constraints)
imposed from both the external environment and it-
self. A biological system does this by having a va-
riety of different mechanisms that support different
kinds of flexibilities at many levels. For example, bi-
ological systems have many ways of producing graded
responses - at a cellular and chemical level, at a neu-
ronal level, and at a behavioral level. They can ad-
dress several goals at once and combine the informa-
tion from a variety of senses. Yet all of this diversity is
gracefully merged into one fluid, continuous, and co-
ordinated pattern of behavior (See Bellman and Wal-
ter, 1986). However, even in the simplest organism,
the flexibilities and the coordination does not come
simply or cheaply. 1

In a computer system, at least for the present, the
emphasis must largely be on explicit knowledge that
is processed by other programs and less on generative
processes that by their actions give rise to coordina-
tion. For example, one key aspect of coordinating a
complex system is to have one program monitor the
results and behavior of other programs. This requires
much more than simply having the monitoring pro-
gram triggered to do some action by the values sent
to it by the monitored program; instead it requires
explicit representations of the monitored program,
including its failure modes, its usual output, and a
record of its results and so forth. Hence, to provide
such coordination requires a tremendous amount of
bookkeeping (documentation, tracing, design histo-
ries, shared databases and knowledge bases).

Many researchers have been developing new ways
of creating increasingly open environments (See Pur-
tilo et al., 1985; Erman et al., 1986; Bond and Gasser,
1988 for examples). In our research on VEHICLES, a

1One current debate in theoretical neuroscience is whether
such adaptive, intelligent behavior is best modelled by mak-
ing use of knowledge or information concepts (a software anal-
ogy) and/or as physical dynamical systems (an analogy relying
on chaotic dynamics, a mathematics describing stabilities and
changes of stabilities). In a software system, we have far fewer
interesting and generative capabilities.

1103

conceptual design environment for space systems, we
have been developing an approach (called wrapping)
to flexibility and integration based on the collection
and then processing of explicit qualitative descrip-
tions of all the software resources in the environment
(Bellman and Gillam, 1990; Landauer, 1990). The
detailed descriptions (or metaknowledge) of the re-
sources are used by the system to help partially au-
tomate the combination, selection, and adaptation of
tools and models to the particular requirements of the
user and the type of problem being solved. This ap-
proach also allows for a great diversity of information
types and languages. At the current time, we have
a simulation, VSIM, used to study both the types of
wrapping descriptions and the wrapping processes.

3 INTELLIGENT USER SUPPORT

As noted above, supporting the design and analysis
of complex systems requires a diversity of models and
tools; the result is often a software environment that
becomes itself a complex system. Hence, we feel it
is important to provide intelligent user support func-
tions; that is some means of supporting the user (be
it human or another computer program) in the selec-
tion, assemblage, integration, adaptation, and expla-
nation of the software resources.

By selection, we mean that the system helps the
user to select which software resources are appropri-
ate given the current problem or task. For example,
in VSIM, we have experimented with two simple sce-
narios involving selection: in the first case, a human
user has selected optimize from a menu containing
a number of analyses in VEHICLES and the system
uses the wrappings of three optimization programs
and the wrapping for the set of equations to be op-
timized to determine which optimization program is
most appropriate; when the system finds no basis for
distinguishing between two of the optimization pro-
grams, it uses wrappings again to select an appro-
priate user screen for presenting the user with the re-
maining candidate optimization programs from which
to select. In the second case, a VEHICLES solver has
bombed on a set of equations and the system itself
poses the problem of selecting another solver, which
is done automatically on the basis of the wrappings,
with a record kept of the choice and use of the selected
solvers.

To us integration is more than simply allowing tools
to “talk” (we prefer to use the term assemblage for
this permissive hooking-together of tools); rather, it is
providing some means for deciding when tools should
talk. For example, when should a given model send
its output to another model; when should a given



1104

database provide the information for a given analysis.
In the wrappings, we have conditionals (implemented
as rules, but there could be other implementations)
which help define the context for integrating tools and
models.

By adaptation, we mean the modification of the
software resource depending upon the problem or task
and the information currently available. This adap-
tation could be changing the input file or control pa-
rameters to a simulation or changing the queries to
a database or changing the default values in a model
and so forth. The last critical intelligent user sup-
port function is ezplanation, that is, at a minimum,
providing the means to record and document how
the software resources were selected, integrated, and
modified during the use of the software environment.
Eventually, we would like a more interesting form of
explanation, where the explanation is adjusted de-
pending upon the user and the problem or task.

4 STUDYING WRAPPING WITH VSIM

Using VSIM, we have learned a number of things
about the knowledge necessary in wrapping, which
we summarize below. First, in order to perform the
five intelligent user support functions listed above,
we need to represent and utilize three types of knowl-
edge: metaknowledge (e.g. knowledge about a given
method or tool or about the use of knowledge in
a knowledge base), user models (knowledge about
the types and activities of the user), and domain
knowledge (especially knowledge about the types of
problems in that domain and the types of contexts
that constrain the choice and use of given methods
and information.) In VSIM, we have been experi-
menting on how to utilize each type of knowledge;
currently VSIM is composed of a planner knowledge
base (PKB), a wrapping database (WDB), and a set
of wrapping processors and other software resources,
which are all wrapped. The PKB contains triplets of
the form:

{ Problem Definition
Information Available
Resource Name }

The “Problem Definition” has been simplified to
be a list of keywords corresponding to the activities
that the system can provide to the user, such as “op-
timize”, “solve”, “parametric study”; or at a higher
level, they could be such activities as “design a new
satellite” or “tailor an existing satellite”. Eventually,
we can incorporate more interesting problem decom-
position methods; we have simplified the problem def-
inition in order to study how to relate the problem de-

Bellman

scriptions to the software resources, and how to spec-
ify the minimal information required by the software
resource to be used for a given problem. In the WDB,
each wrapping contains a name of a software resource,
input and output requirements and restrictions, and
then we have been experimenting with many differ-
ent ways of expressing additional information about
the appropriate use of the resource under different
conditions. One important point to note is that in
VSIM all the software resources are wrapped, includ-
ing all programs processing the wrappings. Hence,
VSIM selects the “matcher” program used to match
the wrappings of the model and the optimization pro-
grams, in the example scenario described above.

In the PKB, the problem definition reflects knowl-
edge about: the resources provided by the software
environment (metaknowledge); the desired activities
of the user (user models); and the methods and re-
quirements of solving problems in a given domain. In
the WDB, the knowledge is largely metaknowledge
about the use and type of software resource, but it
crosses any neat lines and includes in any condition-
als, references to domain knowledge and user models.

One of the problems we encountered when we
started to write the wrappings was what we call the
“library problem.” That is, we tried to formulate a
description of a software resource that would be suit-
able for all wrapping purposes for all time. We soon
learned that, at least for the purposes of formulating
these descriptions, we need to start with five differ-
ent descriptions, each containing the semantics corre-
sponding to the five different intelligent user support
functions described above. In addition, for a large
software resource (such as the large simulations we
deal with in VEHICLES), we need to develop sev-
eral wrappings, each corresponding to a major mode
of use for that resource. Lastly, an issue we have
not yet addressed in VSIM, we can not consider the
wrappings as a static description. This becomes par-
ticularly clear when we attempt to include the de-
signs that are being generated by the VEHICLES sys-
tem as part of the wrapped resources in the system.
Thus the system must do more than just process ex-
isting descriptions; it must have the processes that
permit the development of these descriptions as the
system develops its “products” (designs, reports, and
so forth). This has led to the realization that in fact
the wrappings will always be evolving as either the
system generates new resources (its “products”), or
either the system or the user discovers additional in-
formation about a given resource under some given
context or usage.

Although we have focussed on the flexibility and in-
tegration provided by utilizing wrappings, it is impor-



Supporting the Design of Complex Systems

tant to emphasize that flexibility and integration in a
software environment occur at several different levels.
Hence, in addition to the use of wrappings, we have
also experimented with how best to use network ser-
vices and message-passing kernels to take advantage
of different programming languages and platforms.

Lastly, the wrappings represent a self-description
of a software environment that is processible by that
environment. In Maes’ terminology (1987), such a
system is “computationally reflective” and her ev-
eryday examples of reflection range from the now
commonplace, e.g. keeping performance statistics
and debugging information to the exciting possibil-
ities for autonomous systems and programs with self-
optimization, self-modification, and self-activation.
We are excited by the recent realization that VSIM
can eventually be considered just another resource
in the VEHICLES environment; one with the rather
special property of being a simulation of itself. Hence
when we add a new resource to VEHICLES, we would
eventually be able to immediately simulate its inte-
gration into the system. With wrappings, we hope
to make software architectures more testable, main-
tainable, and open. The hope is that eventually we
will have computer systems in which the means to
test and evaluate the system are not peripheral, but
rather an integral part of the software system.

REFERENCES

Bellman, Kirstie L. and A. Gillam. Achieving Open-
ness and Flexibility in Vehicles. In AI and SIM-
ULATION Theory and Applications. Proceedings
of the SCS Eastern Multiconference, 23-26 April,
1990, Nashville, Tennessee. Simulation Series Vol.
22(3), April 1990. pp 255-260.

Bellman, K. and D. Walter, Biological Processing.
Am. J. Physiol.: Reg., Int., Comp. Physiol. 15(6),
860-867, 1984.

Bond, A.H. and L. Gasser, editors. Readings in
Distributed Artificial Intelligence. Los Altos, Ca:
Morgan Kaufmann, 1988.

Erman, Lee D., Jay S. Lark, Frederick Hayes-Roth.
Engineering Intelligent Systems: Progress Report
on ABE. Teknowledge Inc TTR-ISE-86-102. In
Proceedings: Expert System Workshop, April
1986. SAIC Report Number SAIC-86/1701.

Landauer, Christopher. ~Wrapping Mathematical
Tools. In AI and SIMULATION Theory and Ap-
plications. Proceedings of the SCS Eastern Multi-
conference, 23-26 April, 1990, Nashville, Tennessee.
Simulation Series Vol. 22(3), April 1990. pp 261-
266.

1105

Maes, Pattie. Concepts and Experiments in Com-
putational Reflection. OOPSLA ’87 Proceedings,
1987. pp 147-155.

Purtilo, James. POLYLITH: An Environment to
Support Management of Tool Interfaces, ACM 0-
89791-165-2/85/006,/0012. 1985.

Purtilo, James M. "POLYLITH and Environments
for Mathematical Computation”, University of
Illinois Dept of Computer Science, Report No.
UIUCDCS-R-84-1135. 1984.

Walter, Donald O. and Kirstie L. Bellman. Some
Issues in Model Integration. In AI and SIMU-
LATION Theory and Applications. Proceedings
of the SCS Eastern Multiconference, 23-26 April,
1990, Nashville, Tennessee. Simulation Series Vol.
22(3), April 1990. pp 249-254.

AUTHOR BIOGRAPHY

KIRSTIE L. BELLMAN is a senior scientist in
the Computer Science and Technology Subdivision
of The Aerospace Corporation. Dr. Bellman has
over twenty-five years of academic, industry, and con-
sulting experience in the development of both con-
ventional computer models and artificial intelligence
applications. Her published research spans a wide
range of topics in the cognitive, neurophysiological,
and information-processing sciences. Five years ago,
she started the Vehicles project.



