Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

PROCESS CONTROL FOR LARGE COMPLEX SYSTEMS

Felix Bretschneider, Christa Kopf, Markus Zolg

Corporate Research and Development
Siemens AG
8000 Munich 83

ABSTRACT

The ever-increasing complexity of technical systems,
especially computer-based ones, calls for support to
control these systems efficiently. This paper deals
with the problems of modeling and managing com-
plex processes. A new modeling technique which
combines both process and object characteristics is
presented and a scheme for automatically applying
the model information to process control is described.
The approach has been been tested in design systems
for electronical CAD.

1 INTRODUCTION

The term “system” is often used in conjunction with
computer based technologies. Computers offer the
power to control, simulate, or design systems of an
unforeseen complexity.

The goal of early computer support was to provide
solutions for singular problems which could not be
handled manually such as finite element methods or
electronic simulation. More and more of these “tools”
became available, thus covering entire problem do-
mains (e.g. electronic design). The tool sets began to
form intricate “systems” themselves and confronted
users with the task of selecting appropriate tools for
a given problem and coordinating their employment.
This task itself has reached the limit of being man-
ageable “manually” and calls for computer support.

The crucial prerequisite for the step from man-
ual heuristic handling of systems to highly auto-
mated solutions lies in the understanding and, subse-
quently, a formal modeling of these systems. For-
mal system modeling techniques have been a cen-
tral subject of systems theory since the early 1960ies
(Petri,1962. Hopcroft and Ullman,1967. Zeigler,1976
and many others). A first approach to the required
system modeling task is the application of these well-
established theories. As we will show in Section 2 of

1091

this paper they provide solutions for specific system
aspects. However, we lack a comprehensive system
model which provides enough detail for the control
of complex processes. Especially we miss a model-
ing technique which integrates process flow and ob-
ject structure. In Section 3 we examine some of the
most popular modeling techniques and present our
approach to this problem. Based on this approach
Section 4 shows how to deal with the the special as-
pect of decision making within processes. In Section
5 a process management model is presented.

2 PROBLEM DOMAIN

2.1 Overview

Systems in this context are defined as a set of mecha-
nisms or procedures transforming matter or informa-
tion.

Traditionally the characterization and modeling of
these systems, which is a prerequisite for their con-
trol, follow two somehow complementary approaches:

a) The process flow is regarded as the central aspect
of the system. Process flow refers to the struc-
tural and causal order of the steps/phases which
the matter/information has to pass.

b) The system is described via the characteristics
(e.g. structure) of the matter/information as it
is processed (and changed) within the system.

In this paper we will restrict ourselves to the observa-
tion of discrete event information systems, meaning
that

i) the process is structured into a finite number of
discrete steps (in contrast to continuous phases).
Each step is performed by an agent which is ac-
tivated depending on the occurrence of specific
events.

1092

i1) the system processes information which can be
described as a collection of discrete items in the
following referred to as objects.

Examples of such systems are hardware and software
design systems where the information objects are rep-
resentations of the entity to be designed (e.g. source
code, object code, executable) and the agents are the
tools used to achieve the design goal (e.g. editor,
compiler, linker).

The system modeling approach according to a)
tries to answer the question “What task does a specific
agent perform, and how do the individual agents work
together?”, whereas approach b) raises the question
“What do the object and, especially, their structure
look like in a specific state of the process?”

In the following paragraphs we will look at object
structures and process flows in discrete event infor-
mation systems more closely and and discuss different
modeling techniques and their limitations.

The complexity of the object structures processed
varies strongly among systems. It depends on the
number of object types, their mutual dependencies
and the space in which these dependencies occur. A
good example for systems with complex object struc-
ture are hardware design systems. The design objects
(ICs, modules, cells) can be represented in a three
dimensional “design space” (Bretschneider, Lagger,
Schulz 1989). This space is spanned by the object
hierarchy (e.g. an IC is composed of many modules
which in turn are made up of cells), by the versions
of components (representing different design stages)
and alternate solutions (showing different design ap-
proaches), and by different representations/views of
these components (behavior, structure, physical lay-
out)). Appropriate design data management has to
handle the identification and localization of each of
the data objects describing specific system aspects.
But, even more a task for computer based solutions,
the design system has to resolve complex mutual de-
pendencies of data objects in this space.

Complez process flows, besides pure sequences, con-
tain non-trivial control structures such as recursions,
iterations, choices, concurrency and synchronization.
Thus many dependencies of agent executions are in-
troduced which have to be described and supervised
adequately. Again, hardware design systems pro-
vide a good example for systems with complex pro-
cess flows. The different tasks (synthesis, simulation,
test pattern generation, floor planning, layout assem-
bly), due to their complexity, are often handled se-
quentially resulting in many design iterations, in a
large number of design versions and, because of in-
consistencies, in error-prone designs. This problem
is even more severe in systems design where different

Bretschneider, Kopf and Zolg

domains (hardware, software, mechanics) have to be
coordinated. Thus “concurrent” design has become
a hot topic which allows to proceed with many de-
sign steps in a parallel and which provides detailed
coordination among them.

Figure 1 shows a classification of systems with re-
spect to complexity of process flows and object struc-
tures. It also shows typical examples. As can be
seen from above, the systems we are most interested
in, CAD systems, exhibit both complex flows and
complex object structures. In order to control such
processes we therefore need an integrated modeling
technique which adequately describes both aspects.
But let us first look at some conventional, well es-
tablished modeling techniques and their limitations.
Commonly used modeling and process control tech-

process
complexity

A

e.g.: hardware
design systems,
mixed HW/SW
systems

e g.: productionv
processing
facilities

high!

e.g.: software
design systems,

low L
assembly facilities

P
-

object
complexity

low high
Figure 1: System And Process Characteristics

niques are either object structure or process oriented.
A typical example for the first category is given by
the UNIXTM make facility commonly used for soft-
ware design (UNIXTM Manual Pages(1)). A typical
make structure for compiling and linking a program
is shown in Figure 2 a). The key items in the make
scripts are the module names, the script structure
represents the program structure, and the commands
- often representing one and the same process step
e.g. “compile” - are bound to these structural items.
Thus, due to the structure orientation, the model of
process flow is entirely broken up. Without knowing
the inference strategy of make it is not possible to find
out which step is performed first and which one later,
or even whether there is a potential deadlock in the
system. Another severe limitation is that a new make
script is needed for every new program structure.
make is good for (the final stages of) software design
because in this case the object structure is known and
remains fixed. Complementary approaches like flow
graphs or state-transition networks model the “pro-
cess flow” but neglect the object structure entirely.
A flow graph models a process as a directed graph

Process Control for Complex Systems

make-stucture:

<module>: <depends-on-module(s)>

action (if module older than depends-
on-module)

e.g.:

program: object; object; e e e object,
‘link'

objecty: sourceqq sourcejzee s sourceqn
‘compile’

object: sourcezq sourcezz e ee sourcea,

‘compile’
a)
r=-=—==-=- 1
| |
L >t edit Ly | compile > link
b) (source) (object) (program)

Figure 2: a) Structure and b) Process Oriented Model
for Software Development

of items which represent individual activities. Thus
the model provides information about the sequential
respectively concurrent order of activities, also indi-
cating which activity feeds its “output” as “input” to
a following activity. There is no information modeled
concerning the structure of this input and output. A
simplified software development flow is shown in Fig-
ure 2 b) as a complementary view to the structure
oriented make model. Flow graphs are typically used
to describe the functionality of systems to human be-
ings (e.g. program flow charts) or to handle very
simple objects (e.g. description of the evaluation of
a formula). As can be seen from the software design
example in Figure 2 b) they cannot directly be used
for control.

State-transition networks such as standard Petri
nets (Rozenberg, Thiagarajan 1986) or finite state
machines (Hopcroft, Ullman 1988) also allow for an
appropriate control of asynchronous respectively syn-
chronous processes but do not support the structural
modeling of the processed information either. These
models are discussed in more detail in Chapters 3.1.1

and 3.1.3.

2.2 Integration of structure and process

The ambitious goal of our project is a synthesis of
both approaches described above, i.e. a combination
of process flow and object structure modeling. In

1093

the following paragraphs we will illustrate why we
regard this integration of process and object struc-
ture as essential and we will show why the respective
approaches cannot simply be put together in an or-
thogonal way.

An orthogonal process-object structure space al-
lows for navigation in this two dimensional space,
which is indifferent to the choice of a preferred axis.
In Figure 3 the definition of a process flow, which is
applied on the entire object, has the same result re-
garding a specific object component (trace a) as an
initial selection of the latter component and a subse-
quent application of the given process flow (trace b)
Unfortunately, general complex systems do not nec-

object
structure a)
\ .DII-IQI-O'III‘IIIIII’
4 I) : : . e
1
1
1
prc;.ess
flow

Figure 3: Orthogonal Process - Object Space

essarily comply with this simple orthogonal model, as
we will see in the following discussion.

Firstly let us examine the underlying principle of an
approach according to trace a) of Figure 3. A process
flow oriented model will have no knowledge about the
structure of the system to be modelled. This implies
that a single flow is applied to every object compo-
nent in the same way.

If we take for example the development of a hetero-
geneous system, say an electronic telephone switch-
board which consists of hardware and software sub-
systems, it is obvious that the individual development
of either component will follow entirely different pro-
cesses.

Consequently, it can be stated that a system model
based solely on the process flow is not sufficient,
rather the object structure has to be taken into ac-
count.

Secondly, trace b) supposes a static object struc-
ture. This means the object structure is not changed
during the process, the graphs representing the indi-
vidual object structures at the different process steps
are isomorphic. Again, this is an unbearable limi-
tation for process models. Assume for example the
physical layout of a circuit might require a partition-

1094

ing into several chips which do not match the bound-
aries of the circuit modules. In this case the struc-.
tures are not only non-isomorphic, but it is also not
possible to map a limited set of circuit modules to a
physical partition, thus yielding a real n-to-m relation
between components of either representation.
Concluding, we find that is insufficient, to have a
static object structure model, rather it has to be ob-
served how the object structure is transformed during
the process.

Both views of systems show the need for an in-
tegrated modeling of process flow and object struc-
ture, which is more than a combination of isolated
approaches dealing with either aspect. Following
from the discussion above, such an integrated system
modeling is a non-trivial but essential prerequisite for
a general approach to the control of complex systems.
Our approach to this problem will be discussed in
Chapter 3.3. Furthermore, as we will see in Chap-

dynamics
1 flexibility

FSMs

petri nets configurations \
 —— -
structure
oriented

process
oriented

Figure 4: Synthesis Of Structure And Process Ori-
ented Models

ter 4, another important aspect of systems modeling
addresses the dynamic characteristics of the system
structure. Thus, with respect to the integration of
process and object structure on one hand and to the
degree of flexibility on the other hand our “area of
interest” can be located in a graph according to Fig-
ure 4. First approaches to the integration of struc-
ture and process control have been presented in the
CAD-Framework area. E.g. the integration of object
and (process-) resource management was proposed
(Smith, Cavalli 1990). Other concepts have been
presented in the context of concurrent engineering,
trying to parallelize certain activities, which requires
knowledge of the process and its objects (Pennell,
Winner, 1989). Nevertheless it can be stated that the
addressed problems are far from being solved, while
at the same time modern engineering methods (cov-
ering all phases from planning through development
to fabrication) require appropriate support exactly in

Bretschneider, Kopf and Zolg

this area.

3 SYSTEM MODELING

3.1 Modeling techniques

As described in the overview there are several differ-
ent ways of modeling complex systems. In this paper
we discuss three different techniques. To show the
differences between them, we model the same exam-
ple using each technique. The example shows a part
of a manufacturing process: Two elements “A” and
“B” have to be constructed separately and then have
to be assembled. The elements “A” and “B” are in-
dependent. The only restriction is, that the construc-
tion of each element requires the same tool, which is
available only once.

3.1.1 Finite Automata

The mathematical theory of automata is mainly an
abstract study, but many applications occur in daily
life. A finite automaton is defined as a set of states,
a (nonempty, finite) input alphabet and a transition
function. A state describes the momentary status of
the system with respect to the entire process history.
The input alphabet defines a set of possible input
symbols or actions. Depending on such an input sym-
bol the transition function describes state transitions
(Hopcroft, Ullman 1988).

A directed graph can be associated with a finite
automaton. The nodes of the graph correspond to
the different states. One state is supposed to be the
starting state, some other states are marked as possi-
ble final states. The state transitions are represented
as directed arcs, leadiny from one state to another,
labeled with the corresponding input symbol.

The finite automaton accepts its input, if there is a
way through the corresponding graph (leading from
the initial starting state to a final state) in the sense
that the input symbols match with the corresponding
state transitions. Figure 5 shows the example men-
tioned above modeled as a finite automaton. Looking

A,notB

Stan /O
constr. A constr. C) O
Cm@ constr. A

final
state
notA,B

Figure 5: Finite Automata

at the graph it is not obvious any more, why there is

Process Control for Complex Systems

a conflicting situation after starting the system. One

can see only, that the state transitions “construct-A” .

and “construct-B” have to be executed one after the
other (but not why!).

3.1.2 Flow Graphs

Data flow models describe systems in terms of locally
controlled events. Each event is the “firing” of an
“actor” (Dennis 1985). The semantic of a data flow
graph is closely related to the semantics of applicative
programming languages. A program module is repre-
sented by a directed graph. The nodes of the graph
are called “actors”, and the arcs are called “links”.
The links represent paths over which data values are
conveyed from one actor to another. The links that
terminate on an actor make up an set of input links
of that actor. The links that originate from an actor
make up an set of output links. The state of a com-
putation in progress is shown by placing tokens on
the links of a data flow graph. A computation can be
regarded as a succession of snapshots between which
tokens are placed and removed by firing of actors ac-
cording to the following rules:

o An actor of a data flow graph is enabled iff there
is a token on each of its input links.

e Any enabled actor may be fired to define the
“next state” of the computation.

¢ An actor is fired by removing a token from each
of its input links and placing a token on each of
its output links.

Each token has an associated data value, and the fir-
ing of an actor includes applying a rule characteristic
of the actor to define the values of tokens places on
output links in terms of the values of the tokens orig-
inally on the input links as shown in Figure 6. Using

A

+
inA inB B+ product
—| constr. A | constr. B | assembly
B+ A+
inB nA B+
—| constr. B »| constr. A 1 assembly —>
product

Figure 6: Flow Graph

a simple flow graph there is no way to show the con-
flict. The process has to be modeled twice in order
to reflect the different sequences.

1095

3.1.3 Petri Nets

Introduced by Carl Adam Petri, Petri nets are nowa-
days widely used in computer science as well as in en-
gineering to model concurrent discrete event systems
and to study their behavior (Rozenberg, Thiagarajan
1986). Petri nets are directed bipartite graphs which
consist of “places” to represent states or locations,
and “transitions” to represent actions. Thus, Petri
nets are a combination of flow graphs and finite au-
tomata. They represent the actions of a system as
well as the states. Tokens can be placed on a state
to model that a certain condition is satisfied, an ob-
Ject is at a certain location, etc. The set of all places
together with their tokens is called a marking. A sys-
tem is modeled by a Petri net and an initial marking.
Its dynamic behavior is defined by the following firing
rules:

e A transition T can be fired (is enabled) iff all
input-places (places with arcs leading to T) hold
one token and all output-places (places with arcs
leading from T) hold no token.

e After the transition has been fired, one token is
removed from each input-place and one token is
placed on each output-place.

Thus the static as well as the dynamic behavior of the
system can be modeled as shown in Figure 7. More-
over, a rich mathematical theory exists for Petri-Nets
which allows for proving of certain dynamic proper-
ties of such systems, e.g., absence of deadlocks, etc.
(Genrich 1987). As shown in our example, the Petri

constr. A —PO\
(0O

constr. B p—p

assembly —PQ

PRY

Figure 7: Petri Net

net offers the possibility to express the conflicting
situation without having to specify an explicit se-
quence of events. That means, either “construct-A”
or “construct-B” can consume the token representing
the construction tool. This enables a more flexible
way of modeling.

Comparing the three different approaches of model-
ing the small example, it becomes obvious that fi-
nite automata and flow graphs provide less modeling
power than Petri nets. They can in fact be viewed as
restricted forms of C/E Petri nets.

1096

3.2 Modeling Requirements

An appropriate technique for modeling complex large
systems has to fulfill the following requirements. The
model used to describe such a system has to contain
descriptions of

1. active components (e.g. agents)

2. passive components (e.g.
states)

storage facilities,

3. complex objects (e.g. files, current state)

4. static/dynamic dependencies between compo-
nents and objects (e.g. I/O behavior of a agent)

The behavior of a system is governed by the actions
that might occur. An action, i.e. execution (firing)
of an active component, usually causes a change in
the state of the system. Such an execution can be an
agent invocation, a user request, etc.

The model has to reflect sequences, concurrencies
and conflicts of actions. In order to be able to control
a process, i.e. a number of actions with a given goal,
the system model must accurately describe all the
dependencies between the actions.

Knowledge about the causal order is important
to invoke the right agents at the appropriate time.
Knowing about concurrencies makes it possible to
start processes in parallel (concurrent engineering to
reduce time and costs). A conflict in the system is a
situation where a decision has to be made which one
of several enabled agents should fire. This decision
can be made by a user or a process control facility
(see chapter 4).

A modeling technique should provide different lev-
els of detail for describing a system. Using model
hierarchies causes a reduction of complexity through
data hiding, making a system model easier to under-
stand, and the possible reuse of substructures (just
like the introduction of procedures usually makes a
program easier to understand and reduces code size).
Thus the top level description of a system would just
give the information about the main components and
their relations without looking at the detailed struc-
ture of each component (e.g. subtasks performed by
an action).

The goal of modeling a software system is to con-
trol the process flow during execution, making de-
cisions on the fly instead of a priori (see also chap-
ter 4). Early decisions unnecessarily limit the search
space for solutions often resulting in time consuming
and costly backtracking steps later on. “Lazy” deci-
sion making postpones all decisions until the latest
possible time when hopefully more data is available

Bretschneider, Kopf and Zolg

to make them in a more precise way. If providing
an intelligent user support, it is necessary to exactly
identify the state of the system in order to be able to
make the “right” decisions.

Therefore the model has to express the dynamic
behavior of the system by describing the state changes
caused by the firing of transitions. For example states
of the systems could be described with the help of
tokens and the state changes could be expressed by
firing rules causing some tokens to be removed and
others to be created.

In addition to the requirements above, a system
model must be able to represent detailed informa-
tion regarding the objects that are manipulated by
the system. Their structure and relationships often
influence the process flow. Consider design systems,
for example, were the hierarchical structure of the
design objects has a severe impact on the design pro-
cess. Some steps are performed top-down were the
process on a lower hierarchy level is dependent on
the existence of certain object representations on the
higher level (typically planning steps), others follow a
bottom-up approach (analysis steps, e.g. simulation).
Due to this fact, it is necessary to use a modeling
technique which allows the identification of individ-
ual object types.

3.3 Our Modeling Technique

While modeling a complex system we have to take
care of the process flow (the actions) within the sys-
tem as well as regarding the states of the system.
Since Petri nets represent both, the actions and the
states of a system, we decided to chose Petri nets as
a modeling technique.

Using the simplest Petri net model, the Condition-
Event-Nets (CE-nets), we would have the restriction,
that each place can contain at most one token at any
time (since it models a condition that either holds
or does not hold). Describing systems using CE-nets
would cause very large models, and the type of sys-
tems that can be modeled would be restricted.

A more suitable Petri net type is the Place-
Transition-Net (PT-net). PT-nets offer the possibil-
ity to use any number of tokens on one place but the
tokens are all of the same type. It is therefore possible
to model structures like infinite counters.

Since we want to model complex systems process-
ing complex objects, we need the possibility to model
essential aspects such as relationships between tokens
as described in section 3.2. That means we have to
identify the token in order to reflect the structure
of the objects. Therefore we use another extension
of Petri nets, the “high-level-nets”. Within high-

Process Control for Complex Systems

level-nets it is possible to identify the tokens. Thus
relations between tokens can be expressed, such as
hierarchical dependencies between data objects (e.g.
the cell-subcell relationship in electrical CAD). Many
variations of standard Petri nets have been studied
to provide more modeling power.

We chose Predicate-Transition Petri-Nets (Pr/Tr-
nets) (Genrich 1987) which support arbitrary types of
tokens. This makes it necessary to label the arcs with
patterns, identifying the types of tokens that can be
used or that are created when firing a transition. In
these labels variables can be used. Variables that oc-
cur in labels of arcs leading to and from a transition
have to be instantiated with the same value during
the firing of that transition. An example is given in
Figure 8. In the left picture, transition E can be fired
since for £ = a and y = ¢ the input-tokens satisfy the
pattern [x, y]. The right picture shows the situation
after the firing. The tokens of the Pr/Tr-net have to

R CEQER)

b3 [x] (x] @)

X =

. [x,y]‘] 'y-:at . [x.y] £

&)) iyl Iy (a) Y lyl Iyl (0)

Figure 8: Example of Transition Firing in a Pr/Tr-net

reflect the information concerning the current object
in process. That means, a token is a representation
of a data object, holding the structural information
of the appropriate object. Therefore, the labels char-
acterizing a token contain much information. The
labels are tuples of expressions. Each expression rep-
resents one component of the actual structure (e.g.
type-information, number of parameters, etc).

However, there are still certain unsolved problems
concerning modeling large systems with Petri nets.
The execution of a transition in a Petri net is data
driven, that means an agent can be started, if the
required tokens are available. Basic operations like
a logical ‘not’ and ‘for all’ loops are very often re-
quired to describe a complex process but these cannot
be modeled directly within Pr/Tr-nets. Additional
transitions and tokens can be introduced though to
circumvent these problems. Thus the ‘not’-problem
can be solved by using a token representing the “ab-
sence” of objects (rather than its “presents”) and ‘for
all’ loops can be simulated by special counters. Nev-
ertheless these additional constructs make the model-
ing task very tedious.

Another problem is the representation of agents

1097

with varying input/output types. These agents have
to be modeled several times (since only fixed 1/O be-
havior can be represented in Pr/Tr-nets)

Nevertheless our experience shows, that Pr/Tr-nets
are a convenient tool for system engineers and users
to define and modify the interaction among agents in
a complex system. They also provide a good refer-
ence for novice users to learn about system structure
and its processes. Furthermore, Pr/Tr-nets can easily
support the modeling of concurrent agent executions
and conflicts.

4 MODELING DYNAMIC DECISIONS

So far the problems of modeling complex processes
and objects were discussed and a first solution for an
integrated modeling technique based on Pr/Tr-nets
was presented. Such a net model, however, usually
contains many conflicting and concurrent transitions.
Intelligent process management is expected to sup-
port selection and scheduling of individual objects
and agents as well as of entire subprocesses dynami-
cally at runtime. Therefore the knowledge regarding
these decisions has to be adequately represented in
the process model. Further knowledge regarding the
parameterization of tasks, planning and supervision
of constraints has to be added as well.

Different knowledge representation schemes are
possible. We chose rules, since they are very flexi-
ble and do not require an explicit control specifica-
tion (when to do what ?), which is seldom evident in
decision making situations.

Consider for example the problem of configuring a
computer system. One has to select a central process-
ing unit, a bus architecture, memory and I/O units
to meet given requirements (performance, size, cost).
It is relatively easy to specify the various constraints
in the form of rules, such as

higher performance required =
increase clock rate V choose faster processor
memory access time > clock rate™! =
select memory(access time < clock rate™!)

Note that these rules contain linked parameters
e.g.clock rate. Finding an efficient algorithm (a se-
quence of actions) which selects an architecture sat-
isfying the given constraints can be very complex be-
cause one has to specify the order in which the indi-
vidual constraints are evaluated. A rule-based system
eliminates this requirement.

A further advantage of rules is the possibility to
integrate knowledge from different sources relatively
easily. This is important for our application since the
knowledge regarding process control usually comes

1098

from many different origins (supplier of agents, sys-
tem integrators, system users, learning mechanisms).

Finally, by using rules, it is possible to implement
a simple knowledge maintenance scheme by monitor-
ing the success and failure of each rule application
with respect to achieving a given goal. The “success
rate” can be used to select the most “promising” rules
and to discard “unsafe” ones, thus introducing a very
limited “learning ability” to the system.

Rules add a new dimension of flexibility to process
modeling and control. But on the other hand they
have to be handled with care since big rule sets get
easily out of control when it comes to keeping them
consistent. Because it is very difficult to find out
which rule is applied in a specific situation, it is very
difficult to “debug” rule sets. Therefore major efforts
have to be spent to keep rule sets as small as possible
and to introduce some structure on them. We will
discuss the modeling of local and global scoped rule
sets and its impact on this aspect below.

Traditional rule-based languages, like OPS ’83 or
Prolog, have only limited expressive capability which
sometime makes the task of formulating complex
rules very tedious. Moreover these languages are too
abstract to be used by system engineers and system
users directly. Therefore, on the long run, we will
have to look for higher level representations tuned to
our application of controlling processes.

Given the choice of a modeling technique, the ques-
tion arises, how to combine the decision making rules
with the net representation of the process:

One solution is to define local decision making
agents, which are represented as transitions of the net
and which produce the respective tokens depending
on the outcome of the decision. This approach guar-
antees that the knowledge bound to a transition is
only used when the respective transition fires. Thus,
debugging rule sets is made easier. If the user (or a
learning system) finds, that a decision was not cor-
rect, he or she (it) knows exactly were to look for
incorrect knowledge. There is a problem of keeping
decisions independent since they must not interfere
with the deadlock-freeness of the net. An example of
dependent decisions is given in Figure 9. There the
places P; and P, model limited resources which create
conflicts because the transition T}, T> and T3 compete
for the only token available on each of these places. If
the decisions at P, and P, were made independently
then T} and Ty could both be selected leading to a
deadlock since only one of the transitions can actually
fire. We see that the possibility to model local deci-
sions depends on the topology of the net in that area.
A solution to avoid such problems by restricting the
net topology has been described in (Pagnoni, 1990).

Bretschneider, Kopf and Zolg

Furthermore, planning and constraint supervision in

i decision i
[PR ——

P,

T1 T2 T3

Figure 9: Dependent Decisions Lead to Problems

the local decision making approach is difficult, since
the required knowledge is distributed over the net.

This leads to an alternative approach of a central-
ized decision making and planning agent which oper-
ates on its own global knowledge base, independent
of the net. In this case planning and global control is
easier because all process knowledge is uniformly rep-
resented and globally accessible. It is just as easy to
formulate a constraint about certain properties of the
objects that are handled in the system as it is to spec-
ify a rule about the process history. However, keeping
the consistency between the net and the knowledge
base is a real problem. Moreover, because of the size
of the knowledge base, debugging is by far more dif-
ficult than in the first approach.

Our “meet in the middle” strategy combines the two
approaches. The knowledge is kept local to the nodes
of the net (user friendly) but is compiled together
with the net information into a uniform knowledge
base (avoids problems of “distributed” knowledge).
Prior to this compilation several consistency checks
are performed. Reasoning based on the local input
information of a transition (e.g. a certain data ob-
ject) as well as on global data (e.g. the process his-
tory) is possible. Figure 10 gives an overview of the
architecture of our system, which has been integrated
and tested in an existing design system for electroni-
cal CAD called HILDA [see (Bretschneider, Kopf et.
al. 1990)] .

A graphical process model in Pr/Tr-net represen-
tation, annotated with additional node bound rules
is entered into a graphical editor and simultaneously
checked by a syntax checker. An example for such a
model is given in Figure 11. A selection between two
producers for one object is modeled there. The rules
for making the context specific decision depending on
producer characteristics (cost vs time) is shown.

After completion of the editing process the model
passes through a semantic checker and on positive
outcome is finally translated by our Petri-Net com-
piler into an OPS’83 rule set. For process control the
OPS inference engine operates on the rule set (and its

Process Control for Complex Systems

compilation
Q Q ' syntax and
> Petri nets semantic
ED rules
OPS ‘83 rules
graphic capture ‘

process

further process

flow rules control rules

N/

knowledge

Inference mechanism
(OPS '83)

v/ N\

OoPS
working
memory

activation
of agents

Figure 10: Our System Architecture

own internal working memory) thus activating the in-
dividual agents at the appropriate time.

5 PROCESS CONTROL

As stated above, process control in our system is im-
plemented by an inference engine operating on the
rule set derived from the process model. Additional
rules which control the activation of agents, process
their return values, keep the process history and sup-
ply means for saving / restoring of tokens have been
added.

For the representation and visualization of the pro-
cess execution we use an extended Petri net trace,
which shows each object (token) as a circle and each
activation of an agent (enabling of a transition, i.e all
input tokens are available) as a box. Directed edges
between these symbols indicate that certain tokens
were used or created by a transition firing. A trace
is always acyclic since each object is uniquely created
by one agent. Figure 12 shows a net and two possible
traces. One can easily see that there is a fundamen-
tal difference between the two representations. The
net view gives the static view of the system (i.e. de-
pendencies between agents and data), while the trace
represents the execution of one process within this
system. For a design system, for example, the net
represents mainly the system administrator’s point of
view (the availability of tools and their integration),
while the trace shows the state of a current project
to the designer.

1099

Specification

o
P RULES: ~~_

;7 goal: minimize-time
X=A h -> select-A 5
‘\ goal: minimize-cost
Soo ->seleB L7
Producer Producer| ~ TT----- -
A B
Product

Figure 11: A Simple Process Model

Compared to the representation used by (Casotto
1990) our traces show all activated transitions (all
transitions which could have been fired, not only
those which were actually fired) and thus keeps a his-
tory of all selections including the alternate ones that
were not chosen. With the save and restore features
for tokens and the supplied replay mechanism, a user
can always go back to a previous situation and use
an other transition, if desired. Fig. 12 shows such
a situation. In the first trace one can see that there
has been a choice between transitions A and B and
that B has been selected (the “unused” possibility
A is indicated by dashed lines). In the second trace
a “roll-back” to the first state has occurred and the
other alternative A has been explored. Since the in-
formation of all created tokens and transition firing is
kept it is possible to go back to alternative B later on.
The same approach is used for the decision making
phases. All instantiations of rules are preserved for
inspection by the user or for learning mechanisms.

One can see that traces provide a nice graphical
view of process executions. For complex processes
(such as CAD) one would not look at the whole trace
at a time, but use different views (hierarchy, flows,
state diagrams).

6 SUMMARY AND OUTLOOK

We have described the problems of modeling and
controlling complex processes and presented a new
approach using Predicate-Transition nets and rules.
While this method solves some of the problems in-
volved, many questions remain. These can be sum-
marized as follows:

1100

Figure 12: A Petri Net and its Traces

e increased modeling power (synthesis of object
structure and process flows, representation of
“embedded” decision knowledge)

 advanced process control (high-level decision
support, planning)

e application of learning methods (knowledge ac-
quisition and maintenance)

Besides continuously testing our methodology in dif-
ferent target applications our future research will con-
centrate on decision support and planning since there
is a strong need to support the users of complex sys-
tems, e.g. CAD systems, in this respect.

REFERENCES

Bretschneider, H. Lagger, and B. Schulz. 1989. In-
frastructure for Complex Systems - CAD Frame-
works. In Computer Aided Systems Theory - EU-
ROCAST ’89, eds. F. Pichler et.al.,, 125-133.
Lecture Notes in Computer Science 410, Berlin:
Springer-Verlag.

Bretschneider, F., C. Kopf, H. Lagger, A. Hsu, E.
Wei. 1990. Knowledge Based Design Flow Man-
agement. In JCCAD-90: Digest of Technical Pa-
pers, 350-353. Washington: IEEE Computer Sci-
ence Press.

Casotto, A. 1991. Automated Design Management
Using Traces. PHD-Thesis, Department of Electri-
cal Engineering and Computer Sciences, University
of California, Berkeley.

Dennis, J.B. 1985. Data Flow Computation. Con-
trol Flow and Data Flow: Concepts of Distribuled

Bretschneider, Kopf and Zolg

Programming, Proc. of the NATO Advanced Study
Institute: 345-354.

Genrich, G. 1987. Predicate / Transition Nets. In
Petri-Nets: Central Models and their Properties,
eds. W. Brauer et.al., 207-247, Lecture Notes in
Computer Science 254. Berlin: Springer-Verlag.

Hopcroft, J.E., and J.D. Ullman. 1967. An Approach
to a Unified Theory of Automata. Bell systems
Technical Journal 46, 1793-1829

Hopcroft, J.E., and J.D. Ullman. 1979. Introduc-
tion lo automata theory, languages and computa-
tion. Reading, MA: Addison-Wesley

Pagnoni, A. 1990. Project Engineering.
Springer-Verlag.

Pennell, J.P., Winner, R.I. 1989. Concurrent En-
gineering: Practices and Prospects, GLOBECOM
‘89, IEEE Global Telecommunications Conference
and Ezhibition. vol. 1: 647-655

Petri, C.A. 1962. Kommunikation mit Automaten.
Schriften des Institutes fiir instrumentelle Mathe-
matik, Bonn.

Rozenberg G., and P.S. Thiagarajan. 1986. Petri
Nets: Basic Notations, Structure and Behavior. In
Petri Nets, 585-668. Lecture Notes in Computer
Science 224, Berlin: Springer-Verlag.

Smith, R., Cavalli, A. 1990. Building a Fourth Gen-
eration Framework. it High Performance Systems
vol.11 no. 6: 63-67

UNIXTM Manual Pages(1)

Zeigler, B.B. 1976. Theory of Modeling and Simula-
tion. John Wiley and Sons

Berlin:

AUTHOR BIOGRAPHIES

FELIX BRETSCHNEIDER received a masters
degree in computer science from the Technical Uni-
versity of Munich in 1987 and joined Siemens Corpo-
rate Research in the same year. He has been work-
ing in the field of computer aided design systems for
four years. His current research fields are engineering
management and design decision support.

CHRISTA KOPF received a masters degree
in computer science from the University of Kaiser-
slautern in 1990. Starting with her master thesis she
has been investigating net-based modeling techniques
for design processes. She now works in the design au-
tomation group of Siemens Corporate Research.

MARKUS ZOLG earned a masters degree in
Electrical Engineering from the Technical University
Aachen in 1987. Subsequently he joined Siemens Cor-
porate Research, working on system architectures.
During the last two years his research fields have been
engineering management and infrastructures of com-
puter aided design automation systems.

