Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

TOWARDS A LOGICAL FOUNDATION OF
DISCRETE EVENT MODELING AND SIMULATION

Ashvin Radiya

Computer Science Department
Wichita State University
Wichita, KS 67220

ABSTRACT

This paper presents the first step in developing a
logical foundation of Discrete Event Modeling and
Simulation (DEMS) by defining some of the fun-
damental terms and concepts of DEMS from a log-
ical view point. Two fundamental notions of
events and states are defined in terms two types of
propositions. The notion of "behavior of a
system/model over a time interval is formalized by
defining the concept of discrete scenario. The
modeling capabilities of a logical language are dis-
cussed using two simple examples. The logical
language enhances modeling capabilities because it
provides new pregram connectives and generalizes
the program connectives of many DEMS
languages.

1 INTRODUCTION

DEMS has been widely applied to reason about
and understand complex systems such as computer
systems, communication networks, and manufac-
turing systems. The methodology of reasoning
about a system in DEMS requires (i) a suitable
computer programming language, called a DEMS
language, for expressing (discrete event) models
(ii) an appropriate model of the system which is
constructed by viewing the system in a particular
way, and (iii) a simulation procedure to simulate
the model expressed in the DEMS language. The
particular way in which systems must be viewed
plays a central role in determining the form of a
DEMS language and its simulation procedure.

In this paper the way in which systems must be
viewed in order to apply the methodology of
DEMS is formalized from a logical view point. The
term "logical" refers to the general approach and

1083

perspective of logicians (Dowty, Wall, and Peters
1981). In Radiya (1990) a logical language Lppe
and its simulation procedure are formally defined
based upon the concepts and terms discussed here.
Lppr generalizes some of the ways in which events
and state-changes are related in many DEMS
languages based on traditional world views of
event scheduling, activity scanning, and process
interaction (Zeigler 1976). This is illustrated here
by discussing two simple examples (see Radiya
(1990) for more examples).

There are several advantages of developing a
logical foundation of DEMS. First, the fundamen-
tal concepts and terms of DEMS are formally and
logically defined. Second, the logical foundation
has led to the logical DEMS language L,y which
allows program connectives of many DEMS
languages in a more generalized form and it con-
tains new program connectives. Third, proof sys-
tems can be developed for Lpp; for proving pro-
perties of models such as equivalence of two
models or events occurring in a model satisfy cer-
tain relationships. Fourth, by combining the
relevant research work on causality in Artificial In-
telligence (AI) with the work presented in this pa-
per and Radiya (1990), both DEMS and AI will
mutually benefit. Note that most of the work in
Al unlike in DEMS, is couched in the framework
of logics.

2 FUNDAMENTAL CONCEPTS

For constructing a model, a system must be
viewed in terms of events and states such that the
behavior of the system over an (time) interval can
be represented by a piecewise constant state trajec-
tory (Figure 1). Note that events as defined in
this paper do not occur at every (time) instant at

1084

which the state changes. In the following the no-
tions of event and state are formalized. To formal-
ize these notions, two types of propositions are
defined. A proposition is, roughly, what a sentence
asserts. A proposition is an abstract entity and
cannot be perceived (Dowty 1981). A truth value
t(rue) or f(alse) can be associated with a proposi-
tion.

States

state3
A statel

state?2 state2

state4 ——

-
Time
Fig. 1. A typical state trajectory of a system

2.1 Events and Instantaneous Propositions

The term "event" has several different meanings.
For example, Franta (1977) considers events to be
instantaneous state-changes, whereas Reiter
(1971) considers events to be particular instants
during a simulation when something happens or
should have happened. This multiplicity of
definitions arises from the lack of distinction
between an event and an occurrence of an event.
The difference between an event and its oc-
currence becomes evident from the typical exam-
ples of events such as customer_arrival,
service_begin, and cpu_begins_a_job. In these
events neither state-changes nor instants are asso-
ciated with events per se. However, an instant
must be associated with an event occurrence.
State-changes may or may not be associated with
event occurrences.

The most fundamental characteristic of an event
is that, at any instant, it is meaningful to ask
whether the event has occurred. Another property
of events is that they can occur only at finitely
many instants over any bounded interval. Thus, an
event can be considered to be a conceptual entity
called instantaneous proposition as defined below.

DEF : An instantaneous proposition is a pro-
position that is true only at finitely many instants
in any bounded interval.

To say that an event has (not) occurred at an in-
stant is the same as asserting that the correspond-
ing instantaneous proposition is true (false) at that

Radiya

instant.
2.2 States and Static Propositions

State is usually represented by a finite set of (vari-
able, value) pairs. A (var, val) pair can be thought
of as a proposition asserting the fact that an entity
represented by the variable var has the value val.
Such propositions, called static propositions, can
take the truth value t at infinitely many instants,
unlike instantaneous propositions, in a bounded
interval.

DEF : A proposition p is called a static pro-
position if the truth values of the proposition p
over any bounded interval changes only finitely
many time.

Some typical examples of static propositions are
length_of queue_is_1, machine_is_free, and
machine_is_busy. A state is defined by associating
the truth value t to finitely many static proposi-
tions out of all the static propositions under con-
sideration. A state can be represented by a finite
set consisting of true static propositions. Hence,
difference between any two states, called state-
changes, can also be represented by a finite set.

3 MODELING

A model is a syntactic entity, an expression, of a
DEMS language such that state trajectories similar
to the one in Figure 1 can be generated from the
model using a simulation procedure. Different ini-
tial conditions may lead to different state trajec-
tories. In Lppg, a model is a finite set of formulas
and it relates the truths of two types of proposi-
tions at different instants. The underlying assump-
tions of DEMS are such that over any bounded in-
terval of time there are only finitely many instants
at which the truths of a proposition can change.
Thus, even though the time is represented by the
set of positive real numbers R+ , the behavior of a
system/model over a bounded interval can be
represented by finite means and there are only
finitely many instants that are of interest in that
interval. This can be formally stated by the con-
cept of discrete scenario. Let P and P be the sets
of instantaneous and static propositions.
DEF: A discrete scenario over an interval /
c R+ is a function of the type (P \ P)xI — {t,
f} such that over any bounded subinterval of /, the
truths of propositions in P and P change their
truth values only finitely many times.
A propositional discrete event logic Lppz which

Discrete Event Modeling and Simulation

allows the truths of propositions to be related at
different instants is defined in [Radiya 1990]. In
Lepe, qQuantifiers connect the truths of propositions
at different instants. In the terminology of pro-
gramming languages, quantifiers correspond to
program connectives. Lppe contains infinitely many
program connectives including next, if, when,
whenever, until, while, and at. These connec-
tives are used in a limited way in the DEMS
languages based on traditional world views. For
example, event scheduling world view utilizes for-
mulas of the following kind which characterizes
event routines — { (whenever P) ... }. This for-
mula refers to all the instants at which the instan-
taneous proposition P is true, i.e., all the instants
at which the event occurs. The event routine of
the above form changes the truth values of static
propositions at the referred instants; it may also
assert truths of some instantaneous propositions in
the future. Lppr allows a more generalized form
of formula — { (whenever f) ... }, where f is ob-
tained by combining instantaneous propositions,
static propositions, and logical operators and and
not.

4 EXAMPLES

The modeling capability of Lppe is illustrated by
considering two simple examples. In the first ex-
ample, the following new policy is to be added to
the existing model of a bank. Every time the
manager steps out of the bank before 11:00 am,
the first customer to arrive in the bank while the
manager is stepping out or after the manager has
stepped out receives a gift of $2 in the customer’s
account. A customer can get a gift of at most $2.
Assume that at most one customer arrives at an
instant. If the model was represented in Lppe then
the policy can be added by adding the following
formula in the existing model. {((whenever
manager_steps out & t* < 1lam)) {((when
customer_arrives))
{[customer_gets a_gift of $ 2]} } }. In this for-
mula, quantifiers/program connectives are when-
ever and when. manager_steps_out and
customer_arrives are names of events or instan-
taneous propositions. customer_gets_a_gift of $_2
denotes a transition (state-changes) corresponding
to a customer getting a gift of $2.

Second example consists of adding yet another
policy in the model of the first example. The new
additional policy is that every time a customer ar-
rives when the manager is out of the bank, the

1085

customer gets a flower. This policy can be incor-
porated in a model by adding the following formu-
la to the model of the above example — {((when-
ever manager_steps_out)) {((until
manager_comes_back)) {((if customer_arrives))
then {[customer_gets_a flower]} } } }. Note that
this example utilizes the program connective until
which is not available in the languages based on
traditional world views. Radiya (1990) shows that
extensions illustrated by the above examples are
difficult to achieve in the languages based on event
scheduling world view.

5 SUMMARY

Two types of propositions — instantaneous and
static — are defined to develop a logical founda-
tion of DEMS. The concept of discrete scenario is
defined which formalizes the notion of the
"behavior of a system/model" over an interval.
Two simple examples are presented to illustrate
the modeling capabilities of the logic Lppg. Lppg
enhances modeling capabilities because it provides
infinitely many program connectives which allow
events and state-changes to be related in a general-
ized and logical way.

REFERENCES

Dowty, D. R., Wall, R. E., and Peters, S. Introduc-
tion to Montague Semantics. Dordrecgt, Holland,
D. Reidel Pub. Co., 1981.

Franta, W. R. The Process View of Simulation.
Elsevier-North Holland, New York, 1977.

Radiya, A. A Logical Approach to Discrete Event
Modeling and Simulation. PhD Dissertation.
School of Computer and Information Science,
Syracuse University, 1990.

Rivett, P. Principles of Model Building. New York:
John Wiley, 1972,

Zeigler, B. P. Theory of Modelling and Simulation.
John Wiley & Sons, 1976.

AUTHOR BIOGRAPHY

ASHVIN RADIYA is an assistant professor in the
Computer Science Department at The Wichita
State University. His research interests are discrete
event modeling and simulation, logical foundation
of procedural programming languages, visual pro-
gramming, distributed computer graphics and ani-
mation, and machine learning.

