Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

INTEGRATED INTERFACES FOR DECISION-SUPPORT WITH SIMULATION

Philip R. Cohen
Senior Computer Scientist

Artificial Intelligence Center
SRI International

ABSTRACT

A major limitation of graphical user interfaces for
simulation is that users such as managers and de-
cision makers need to know too much. We exam-
ine the weaknesses inherent in graphical user in-
terfaces to support these users of simulation for
short-term situation assessment and scenario eval-
uation, a style of problem solving characteristic of
military and factory command-and-control. Then,
we present Shoptalk, a factory command-and-control
system with an interface integrating direct manipu-
lation and natural-language processing, and demon-
strate how the Shoptalk style of interaction can over-
come these limitations.

1 INTRODUCTION

The interface to a simulation-based decision-support
system should at a minimum assist the user in it-
eratively assessing the state of the complex system
being studied; expressing, simulating, and comparing
scenarios for altering that state; and, assessing the
resulting state. Although modern simulation systems
employ graphical user interfaces (GUI’s), and hence
benefit from their advantages, they are hindered by
the absence of any provision by GUI’s for end users
to describe rather than merely select objects. This
limitation is particularly severe for nontechnical users
of decision-support or command-and-control systems,
who would like to solve complex unstructured prob-
lems without delving into the intricacies of the un-
derlying computer system. In this paper, we describe
a next-generation integrated interface, incorporating
graphics and natural-language processing, that over-
comes many of the limitations that graphical user in-
terfaces pose for these users of simulation.

1066

1.1 End Users and Their Problems

User interfaces should not be considered in the ab-
stract, but as supporting particular kinds of users in
solving specific types of problems. The user we have
in mind is the decision maker or manager, who would
typically not be the among the developers of the sim-
ulation model to be used, and hence would be unlikely
to know or want to know details of modeling, simu-
lation, programming or query languages, or database
structures. For this kind of end user, the ability to
express strategies and questions is vital, as is ease of
use in general.

One class of problem such users face is to determine
the effects of taking various actions on the short-range
behavior of the complex system under study, starting
in that system’s present state. When the courses of
action and the problem solving process itself are rou-
tine, a user interface can be tailored to the specific
needs at hand. However, decision makers are often
called upon to evaluate nonroutine courses of action,
or to cope with unforeseen effects of prior courses of
action. For such nonstandard cases, a user interface
needs to offer the decision maker a conceptually sim-
ple but powerful set of tools, emphasizing maximum
flexibility and freedom in expressing scenarios and in
determining their effects.

For the users in question, unstructured problem
solving would cycle through the stages of situation
assessment and scenario evaluation. That is, the user
would first determine the present state of the complex
system, and then decide how to alter it to achieve
some desirable end state(s). This process requires
that the user be connected to an information system
that maintains current and historical information. At
the same time, the user needs to have a decision-
support system, such as a simulator, to assist in sce-
nario evaluation. Unfortunately, most simulation sys-
tems are divorced from the real-world information
system (e.g., a factory information system or mili-
tary commaad-and-control system) and so they pro-

Interfaces for Decision-Support

vide different functionality, data structures, and user
interfaces. ldeally, the user should have a uniform
view of both real and simulated worlds. Were this
true, the assessment of the current real-world situa-
tion, and the evaluation of the situation that results
from a simulation would then use similar techniques.
Hereafter, this paper will consider more generally the
analysis of situations, but both prospective and ret-
rospective analyses should be understood.

Given this iterative view of problem-solving, we ar-
gue that users are impeded by their interface to the
information and simulation subsystems. To substan-
tiate this claim, we next discuss strengths and weak-
nesses of two user interface technologies, direct ma-
nipulation and natural language processing.

1.2 User Interfaces

The interface technology of choice in modern sim-
ulation systems derives from the direct manipula-
tion style of interaction currently available on work-
stations and personal computers. With mouse and
menu, users can model the system of interest, set pa-
rameters, supply attribute values for objects, and ani-
mate a simulation run. Although graphics and direct
manipulation are effective interface technologies for
many classes of problems, they are limited in impor-
tant ways. Specifically, they provide little support
for identifying objects not on the screen, for specify-
ing temporal relations, for identifying and operating
on large sets and subsets of entities, and for using the
context of interaction. Thus, the user who is trying
to solve a problem when he does not know which ob-
jects, events, or time periods satisfy his constraints,
can only point to entities on the screen, and attempt
to determine their relevance. At times, this may be
an effective strategy, but in many common circum-
stances, it can also be tedious or even completely in-
effective. Unless a query language is available, and
the user is willing and able to learn it, someone else
must translate the user’s problem into search com-
mands to find the entities of interest. So much for
end-user interaction.

On the other hand, the identification of objects,
events, and time periods are among the strengths of
natural language. That is, English, or any other natu-
ral language, provides a set of finely-honed descriptive
tools such as the use of noun phrases for identifying
objects, verb phrases for identifying events, and tense
for describing time periods. Moreover, these capabil-
ities can easily be deployed simultaneously, as in the
question “when will the F-15’s that are being repaired
be operational?”

Because these interface technologies are comple-

1067

mentary, they can be merged, affording the advan-
tages of each, and overcoming the limitations each
poses for effective problem solving with simulation.
Elsewhere, we have described how to merge such in-
terface technologies (Cohen et al., 1989). In the re-
mainder of this paper, we discuss typical problems
such users face, and then describe a system, called
Shoptalk, that deploys such an integrated interface
to make possible new forms of interaction with simu-
lation systems.

2 EXPRESSING SCENARIOS: WHAT-IFS

Proponents of simulation claim that the strengths of
such systems lie in the analysis of “what-if” ques-
tions. Modern object-oriented simulators (such as
SIMKIT?) represent an improvement over simulation
languages such as GPSS, in that they provide the user
with a graphic ability to create a simulation model
and to set various input and output parameters. For
example, the user could select among various dis-
patching rules, assign priorities, alter interarrival or
service-time distributions, etc.

But, in general, many what-if questions are not
easily modeled by merely adjusting parameters. For
example, the question “If I give IBM lots top pri-
ority, where will the AT&T lots be when the ion
implanter goes down for maintenance?” describes
an assumption (IBM lots are given top priority), a
stopping condition for a simulator (when the ion im-
planter goes down for preventive maintenance [PM)),2
and a question (where are the AT&T lots). None of
these conditions is easily modeled by a simple set-
ting or tabulating of parameters. For example, the
only way to determine which are the IBM lots with
present GUI-based simulation systems would be to
select each currently displayed lot, examine its at-
tributes to find those destined for IBM, and adjust
their priorities. With luck, the system designer would
have made the relevant information easily accessible.
But, when there are hundreds of entities to be ex-
amined (as in many factories), this process would be
extremely tedious, and it would be nearly impossible
to conduct for lots that have yet to be created (be-
cause there would be no icons to select). Rather, the
user should be able to characterize the desired ob-
jects once, and have the system use the description
to find the relevant objects that presently exist, or
as they are created. (Of course, specific search and
action capabilities could perhaps be added to a sys-

I1SIMKIT is a trademark of the Intellicorp Corporation.

2 A scheduling program may already have created a database
of future events, in which case this condition would amount to
a database retrieval.

1068

temn to handle each of these problems, but at the risk
of greatly complicating the interface. In general, if
the user needs to write queries in a query language,
rules in a rule language, or programs in the host sys-
tem’s programming language, most end users would
be lost.)

In summary, our point is that because direct-
manipulation GUI’s typically afford no means for de-
scribing entities of interest, decision-makers cannot
even erpress the scenarios to be investigated.

2.1 The Analysis of Situations

Typically, the tools provided by simulation systems
for analyzing the state of the complex system being
studied include graphical displays, as well as the col-
lection and display of statistics computed over the
usual suite of variables (e.g., throughput, lateness,
down time, etc.) Current interfaces built on object-
oriented message-passing graphics will display such
charts, both as the simulation is progressing and at
its end. In addition, various forms of animation are
possible, though the benefits of animation are often
debated. It is generally true, however, that a user
must know in advance what data he wants to col-
lect before running the simulation. If the user wishes
to see unanticipated information, he would typically
need to rerun the simulation, with a new set of vari-
ables to be tabulated.

However, in the previous section, we argued that
many kinds of what-if questions do not merely in-
volve the setting of variables, but rather the satisfac-
tion of complex conditions. Similarly, in determining
what has happened, the user may want to do more
than tabulate and graph statistics derived from pa-
rameter values. More generally, he would like answers
to questions. To continue our previous example, the
user might want to know where the AT&T lots are,
which ones are late, where they waited, for how long
they waited, etc. Frequently, the user may not know
in advance what questions to ask, but will need to
determine the subsequent questions from having seen
the answers to prior ones.

Current simulation systems make this style of
problem-solving difficult. To support such intelli-
gent exploration of the knowledge base, the simula-
tor needs to record the events that occur and be able
to derive new information on demand. At the same
time, the interface needs to allow the user to pose ar-
bitrary questions rather than just compute statistics.

In addition to learning about the final state of the
simulation, the user may have a bona fide interest in
learning about intermediate states. Thus, a simula-
tion system should provide the capability for viewing

Cohen

the state of the system under study at any prior time
(Rothenberg, 1986). Though a few systems may pro-
vide a “rewind” capability, there are (at least) two
reasons why the user interface to that simulation sys-
tem needs to provide more functionality than merely
allowing users to select a prior time. First, the user
we are trying to support may simply not know what
time is of interest. With systems that allow the user
only to scan backwards by dragging a “slider” or typ-
ing in a precise time, the user would have to devise
a search strategy. A linear search would be partic-
ularly poor, while one that merely stepped through
the events again, as in a slow-motion replay, would
be only marginally better.

Second, such interface tools for entering times
would likely provide only one time per view. But if
the decision maker is interested in all the times when
a certain condition arose, he would have to exhaus-
tively re-apply the temporal search strategy to find
the relevant times. Unfortunately, there are simply
too many time points from which to pick. The deci-
sion maker should be able to describe the condition
of interest only once, and rewind the simulation to
each of the relevant times.

In summary, we have argued that simulation in-
terfaces that allow decision makers only to perform
actions on objects selected from the screen limit the
user’s ability to express many scenarios and to eval-
uate their results. Rather, to be useful in solving
nonroutine problems, the interface must enable users
to describe objects, events, and time periods of inter-
est. The next section describes the Shoptalk system
developed at SRI International (SRI) to provide these
capabilities.

3 SHOPTALK

Shoptalk is a prototype decision-support system de-
veloped at SRI over the past eight years to support
such factory situation assessment and scenario eval-
uation tasks as work-in-progress tracking, quality as-
surance monitoring, and production scheduling. The
current version of Shoptalk demonstrates the applica-
tion of the technology to semiconductor and circuit-
board manufacturing. However, the basic technology
is equally applicable to a wide variety of domains.
For example, a version of Shoptalk is currently being
written for military command-and-control. In this
section, we discuss the system, presenting an exam-
ple of its use for answering what-if questions, and
point out features that make it uniquely capable in
supporting complex problem-solving.

Shoptalk allows users to query databases on the
current state and recent history of the factory and

Interfaces for Decision-Support

e, e e Ce e,

Sisulate Unti1: 15 lots sre here [ox_tubel)
Wor1d: Oreal_merld Tiee: (0] s 0e
Reset Tise. O latest When: ?

stripper) sporeter - prehes
N) stetus’ rumaing

M UK copacity: 2
D _ ~ Qerder: fite

O essteste.)

ove: ()
oa_nere. ()
UNE
scope! 5 Tot3d
conveyor®
cenveyor? conveyoré
plasea_etcher? ox_tubel

(1R

Figure 1: Factory floor window

to examine alternative factory scenarios by running
an event-based discrete event simulator. The sim-
ulator is programmed in Prolog, and thus inherits
a theorem-prover for determining the truth of com-
plex conditions over a database of facts. Rather
than concentrating solely on objects and their prop-
erties, as is common in current generation knowledge-
based simulation systems, the Shoptalk system is cen-
tered around the scheduling, execution, recording, re-
trieval, and manipulation of events (cf. (Rothenberg,
1991)). For example, in contrast to the usual simu-
lation strategy of determining that an event should
occur because its scheduled time has arrived, the
Shoptalk simulator takes an action because its invo-
cation condition has become true.

To specify the necessary conditions, the system fea-
tures an integrated interface that permits intermixing
natural-language queries and descriptions with mouse
pointing, menu selection, and graphical output. The
natural language subsystem is an extension of the
Chat system (Warren and Pereira, 1982) based on
definite-clause grammars (Pereira and Warren, 1980)
written in Prolog. The system parses each natu-
ral language phrase into temporally-qualified Prolog
expression, whose truth is evaluated by a temporal-
constraint satisfier coupled with database retrieval.

The main Shoptalk window contains an iconic de-
piction of the actual factory floor (see Figure 1). The
icons can be manipulated graphically, for example, to
show finer grained attributes (see the icon represent-
ing the stripper in Figure 1), or to alter parameters,
decision-ru’.s, etc. With graphical actions, new ob-
jects of various types can be created and the factory

1069

layout changed. The user can enter stopping condi-
tions for the simulator from the Simulate Until line
of the main window. From the Query line, the user
can ask questions about the actual factory’s present
state and its history. In response to such queries or to
graphically invoked actions, data would be retrieved
from a Prolog database created by a simulation. For
actual operations, such data can be obtained from the
main factory computer(s). Fortunately, it is a sim-
ple matter to translate Prolog into various query lan-
guages, such as the industry-standard SQL language,
to retrieve data from relational databases. With this
introduction, we first describe how a user can retrieve
information from current and historical data using an
integrated interface, and then we describe how the
same interface can be deployed during scenario eval-
uation.

3.1 An Interface Integrating Natural Lan-
guage and Graphics

Pure natural language interfaces for modeling and
simulation date back at least to Heidorn’s (1973)
NLPQ system , which compiled modeling informa-
tion, given in English statements, into GPSS pro-
grams. Shoptalk is more oriented towards using En-
glish in the control of simulation and in the analysis
of results. The system serves as a testbed for inte-
gration of natural language and graphical techniques.
The philosophy is to let users employ each technology
to its best advantage. Graphical interaction, such as
that found on the Apple Macintosh, is effective when
the objects of interest are on the screen or are easily
found, and when the range of possible actions to be
taken is relatively small. Natural language is most
appropriate when the user does not know which ob-
Jects or time periods satisfy his needs, or there are too
many objects to conveniently manipulate graphically.
In such cases, the user can employ natural-language
descriptions to select a relevant object or set of ob-
jects. For example, a user can ask a question such
as “Where were the defective hot lots when lot 3 was
being baked?” without having to know what defects
are being discussed, which lots are “hot” (i.e., have
high priority), or when lot 3 was being baked.
Shoptalk takes advantage of the ability to intermix
natural language with graphics to provide users navi-
gational guidance during problem solving, and at the
same time avoid some of the more difficult complex-
ities in natural-language discourse processing. Inter-
active problem solving often starts out with the user’s
looking at a “big picture,” then narrowing the scope
of inquiry to particular areas of interest. For a user
to be able to engage in an English discourse that nar-

1070

Current question: when did the hot lots errive at ox_tubel?
Juery Lime: 9«

Ffocus en: let interval

follew—wp question: ?
© Wessages: Look hére for messages.

Tot nterval

lot} interval(74,%)

» lot2 interval(79, M)

Figure 2: “When did the hot lots arrive at
ox_tubel?”

rows the focus of attention, the interpretation of each
utterance will depend on its prior context. Unfortu-
nately, present natural-language processing technol-
ogy is rather weak in handling the dependence of
reference on context in a principled way. Shoptalk
incorporates Follow-Up Windows (see Figure 2) as
a tool that can be used to maintain context in an
interaction, using graphics to overcome this difficult
natural-language processing problemi. These windows
remind the user that follow-up questions can be asked
to focus on selected parts of the answer to previous
queries. For example, in response to “When did the
hot lots arrive at ox_tube1?” the user receives a table
indicating that lots 1 and 2 waited there. By selecting
those lots, the user indicates that he wants the next
follow-up question to focus solely on them. Then, if
he asks the follow-up question “When were they in-
spected?” the user has explicitly restricted the scope
of his query to the hot lots that have waited at the
scope. The system will respond with a table of an-
swers in a new follow-up window, which will become
a daughter in a context tree (see Figure 3). The foci
of a given follow-up window constrain the interpreta-
tions of references to focused entities of the same type
further down in the tree. Thus, further focusing on
those lots would specify hot lots that waited at the
scope and were inspected.

The user can also select other portions of the con-
text tree to obtain a new context for follow-up ques-
tions. With the ability to navigate the context tree
freely, the user can maintain several lines of inquiry
and follow those that appear most promising.

Cohen

when lot7 was being baked

Question: where were they
- R0

T Ry

which lots
have waited
ot the
worldl ecepe? q1 shere were

betng uuh?\
[)

Q3

o0

Figure 3: Context Tree

Another feature of this system is its handling of
temporal relations, which are crucial to problem solv-
ing with discrete-event systems. Because Shoptalk
allows users to employ the full English tense system
(Dalrymple, 1988), as our earlier examples showed,
the system provides great flexibility for expressing
temporal relations. This is one of the areas in which
natural language is superior to a purely graphical
or query-based interaction. We know of no purely
graphical means for posing and answering questions
about complex temporal relations, such as the ones
implicit in the earlier question. Moreover, current
query languages such as SQL do not provide the
temporal relationships (e.g., overlapping intervals)
needed to answer complex temporally qualified ques-
tions.

3.2 Scenario Evaluation

Although decision makers needs to cope with change
on an ad hoc basis, their tools are often inadequate.
As we have argued, what is needed is software that
allows end users to pose and evaluate scenarios flex-
ibly, and to draw comparisons easily. To see how
Shoptalk supports such interaction, let us consider a
hypothetical scenario.

After asking a series of questions, the user deter-
mines that the oven temperature is drifting and needs
adjustment, a task that takes, for argument’s sake,
24 hours. The user decides to compare two operat-
ing strategies for the next day: taking the machine
down now, or delaying the maintenance action until
the high-priority lots have been baked, in the hope

Interfaces for Decision-Support

that their progress will not be impeded. The user
has a complex decision to make, but needs to do so
relatively rapidly.

First, the user would push the New World button
to get a new partition of the database. This fea-
ture allows users to create new hypothetical worlds
at any time, providing a tree-structured database,
within which various actions or “standing orders” can
be taken, either at the start of a simulation, or during
the simulation itself. To compare results obtained un-
der various strategies, users can take different actions
reflecting those strategies in different worlds. Then,
with menus, users can alternate easily between the
real world and hypothetical worlds. Because the sim-
ulator creates a database of events, and the question-
answering interaction retrieves data from it or from
the database containing the real-world events, the
same user interface can be provided for exploring both
real and hypothetical situations.

Currently, the actions that can be invoked include
moving lots into a machine, taking machines up or
down, adjusting lot priorities, putting lots on hold,
and alerting users. The system responds to the selec-
tion of an action from a menu by presenting a form,
which contains various slots. The user can point at
icons and “deposit” them into the slots and/or can
type (or speak) English expressions. Shoptalk parses
the content of each slot, determining the objects that
are denoted and the conditions under which to exe-
cute the action. For example, to specify the second
scenario, the user would select the Machine-down ac-
tion from the action menu, point at the oven, deposit
it into the action form, then indicate when the action
should take place by filling in the When field with the
phrase “the hot lots have been baked” (see Figure 4).
During the course of the simulation, and this can be
extended to actions that should take place in the real
world, when the system can prove that an invocation
condition for one of its standing orders holds, it takes
the corresponding action. The user does not need
to know when that condition will arise, nor precisely
which objects satisfy the specified description. Fur-
thermore, the user has neither written pattern-action
rules in a formal language, nor asked a programmer
to write special-purpose code.

Since the user does not know precisely when the
oven will go down, he cannot supply a specific time
to bring it back up. But, using the English language
capability, to bring the oven on line 24 hours later, the
user would simply select the Machine-up form from
the action menu, point at the oven, and fill in the
When field with the phrase “it has been down for 24
hours.”

Finally, the user would decide when the simulation

machine(s): [oveni]
§ when: each hot lot has been bukod.

1071

Type: £ oneshot

Figure 4: Bringing the oven down when the hot lots
have been baked

should stop. In most simulators, the stopping condi-
tion is specified as a time period (a day, week, etc.).
As with other actions the user can specify, the user
can state an arbitrary stopping condition in English.
Let us assume the user wants to simulate until 15 lots
are at the oxidation tube, so he might fill in the Sim-
ulate Until field with the sentence “15 lots are here
<point to ox_tube1>" (see Figure 1).

Once the future state of the factory has been sim-
ulated, the user can then employ the system’s query
facilities to elicit information of interest. In our case,
the user might want to know when the hot lots arrived
at the oxidation tube. Figure 2 shows Shoptalk’s re-
sponse to this question.

Asking what-if questions is often one step in a pro-
cess of making comparisons among different operating
regimens. However, the first question that comes to
mind after a simulation should not have to be the only
question. The user ought to be able to make compar-
isons of answers to arbitrarily complex questions de-
veloped over time. Shoptalk allows for great flexibil-
ity in doing so. For comparing results obtained from
simulations with differing assumptions, rather than
retype a series of old questions, the user can drag the
old question into the new world. In the latter case,
by dragging nodes (questions and their answers) in
the context tree of the old world to that of the new
world, the user can re-ask questions that are arbitrar-
ily deeply embedded, and thus have been determined
contextually. Consequently, the user need not com-
nare in multiple contexts the answers to just the first
question asked, but can explore the space of results

1072

derived from one simulation before deciding what to
compare. In addition, he can explore alternately the
competing scenarios.

Finally, in addition to being able to view the fi-
nal state of the simulation, the user can rewind the
simulation to a time that satisfies some condition by
merely specifying that condition in English. For ex-
ample, the user can find the time when a hot lot was
being baked by filling in that phrase in the Reset Time
slot of the main window. The system resets the dis-
play to that time and constructs a menu for selecting
any of the other times at which the condition was
true. At any time, the user can create a new hypo-
thetical world and simulate in another direction. This
provides a “what-would-have-happened-if” capability
in addition to the usual “what-if” analysis.

4 CONCLUDING REMARKS

We have argued that although currently popular
graphical user interfaces have provided a new level
of ease of use for simulation-based decision-support,
they still can prevent the user from expressing scenar-
ios, and hence from solving certain problems. With-
out the right tools, important questions will not get
asked. For example, the scenarios and capabilities
discussed above would be difficult if not impossible
to obtain with simulation systems employing only
graphical interfaces. In this paper, we hope to have
shown how an interface taking maximum advantage
of both graphics and natural language processing,
supported by a logic-based simulation, can make pos-
sible new forms of problem solving for decision mak-
ers.

5 ACKNOWLEDGMENTS

We would like to acknowledge the contributions
of Mary Dalrymple, David Kashtan, Doug Moran,
Sharon Oviatt, and Fernando Pereira to the develop-
ment of the Shoptalk system.

REFERENCES

Cohen, P. R., M. Dalrymple, D. B. Moran, F. C. N.
Pereira, J. W. Sullivan, R. A. Gargan, J. L. Schloss-
berg, and S. W. Tyler 1989. Synergistic use of di-
rect manipulation and natural language. In Pro-
ceedings of CHI’89, Austin, Texas.

Dalrymple, M. 1988. The interpretation of tense and
aspect in English. In Proceedings of the 26th An-
nual Meeting of the Association for Computational
Linguistics, Buffalo, New York.

Cohen

Heidorn G. 1973. An interactive simulation pro-
gramming system which converses in English. In
A. Hoggatt, editor, Proceedings of the 1973 Winter
Simulation Conference. Association for Computing
Machinery, San Francisco, California.

Pereira F. and D. Warren 1980. Definite clause gram-
mars for language analysis—a survey of the formal-
ism and a comparison with augmented transition
networks. Artificial Intelligence, 13:231-278.

Rothenberg J. 1986. Object-oriented simulation:
Where do we go from here? In J. R. Wilson, J. O.
Henriksen, and S. D. Roberts, editors, Proceedings
of the 1986 Winter Simulation Conference, pages
464-469, Washington, D.C., December 1986. As-
sociation for Computing Machinery.

Rothenberg J. 1991. Knowledge-based simulation at
the RAND Corporation. In P. A. Fishwick and
R. B. Modjeski, editors, Knowledge-based Simu-
lation, Advances in Simulation 4, pages 133-161.
Springer-Verlag, New York.

Warren D. and F. Pereira. 1982. An efficient easily
adaptable system for interpreting natural language
queries. American Journal of Computational Lin-
guistics, 8(3):110-123.

AUTHOR BIOGRAPHY

PHILIP R. COHEN is a senior computer scientist
in the Artificial Intelligence Center at SRI Interna-
tional. He received his Ph. D. in computer science
from the University of Toronto in 1978. His research
interests include integrated interfaces, simulation,
applications to military and factory command-and-
control, and theoretical studies of multiple agents,
Joint activity, communicative acts, computational lin-
guistics, knowledge representation, and planning.

