Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

COMBINING RANDOM NUMBER GENERATORS

Lih-Yuan Deng

Department of Mathematical Sciences
Memphis State University
Memphis, TN 38152

ABSTRACT

We provide some support for the combination genera-
tor from a statistical theory viewpoint. The combina-
tion generator is generated from taking the fractional
part of the sum of several random number generators.
It is shown that combining several independent gen-
erators improves not only the uniformity but also the
independence over each component generators.

1 INTRODUCTION

Combining two or more pseudorandom sequences
into a “more uniform” random sequence was recom-
mended by many authors over the classical Lehmer
(1951) congruential generator or the Tausworthe
(1965) shift-register generator. Wichmann and Hill
(1982) suggested adding three simple multiplicative
congruential generators and taking the fractional
part. They claimed, with a simple example but no
general proof, that this procedure “ironed out” the
imperfections in the component variates. Marsaglia
(1985) empirically compared several popular gener-
ators and concluded that the combination generator
is superior to others. Other authors such as Collings
(1987), L’Ecuyer (1988) and Anderson (1990) also
recommended the combination generator.

Some of the theoretical justification is given in Hor-
ton (1948), Horton and Smith (1949), Brown and
Solomon (1979), Lécuyer (1988), Marsaglia (1985)
and Deng and George (1990). Brown and Solomon
(1979) and Marsaglia (1985) proved that the com-
bination generator will yield a distribution which is
closer, or at least no worse than, either of the indi-
vidual generators. Deng and George (1990) provided
some additional theoretical justification by showing
the combination generator should improve upon the
uniformity. In section 2, we prove a k-dimensional
extension of Deng and George (1990)’s result. We
show that the combination generator should improve
upon the uniformity as well as the independence over
individual generators. In section 3, a more detailed
comparison between our results and those by Brown
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and Solomon (1979) and Marsaglia (1985) is given.
We also give some comments on the relationship be-
tween the combination generators and some of the
recently proposed generators.

2 MAIN RESULTS

Let X11,X21,X31... and X2, X22, X32... be any
two sequence of random variables representing two
separate RNG’s. Our main objective is to study the
combination sequence Yi,Y5,... where YV; = X;; +
X;o mod 1. In particular, for any positive integer
k, we want to investigate the joint probability dis-
tribution of the k-dimensional random vector Y =
X: + X3 mod 1, where X; = (Xi,1, Xi1, - Xiy1)
X, = (X.‘,z,X.‘,z, ...,X.'kz)' with i} < iy < ... < g,

Several notations will be introduced here. Let
[0,1* = {(z1,22, -, @s)'|0 < 2 < 1,1 < i <k}
and (0,1)* {(z1,22, e, ze)'|0 < 2z < 1,1 <
i < k} denote the closed, open sets of k- dimen-
sional cubes, respectively. For any real number z,
r mod 1 = z — [z], where [z] is the greatest integer
< z. For a vectorx = (21,22, ....,2¢)', let x mod 1 =
(zy mod 1,z2 mod 1, ....... , ¢ mod 1)'. Let §; be the
k-vector vertex in [0, 1]¥ corresponding to the binary
representation of j for j = 0,1,2,...,2¥ — 1. Let
A = {61 = 0,1,2,...,2F — 1} be the set of ver-
tices in [0, 1]%. For each y € (0,1)*, there are exactly
2% partitions of [0,1])%, {4;y,j = 0,1,2,...,2¥ — 1},
where Ajy corresponds to the sub-cube of the par-
tition containing the j-th vertex 6;. For exam-
ple, k = 2, y = (y1,%2), 4oy = [0,41] x [0,42],
Ay = [0,u1] x[y2,1], A2y = [y1,1] x[0,32], A3y =
[v1, 1] X [92,1]-

The following lemma lists some simple properties
about Ajy.

Lemma 1. Let A;y,j =0,1,2, ...2¥ — 1 be defined
as above. Then

1. x€ Ajyy ifand only if §; +y —x € Ajy.
“—
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3. fxe(Ai,y nAi.y) dx = 0, for i # j'

Proof. (1) follows easily from the fact that Ajy is
symmetric around (6; +y)/2. Proofs of (2) and (3)
are trivial. O

To show our main result, we need the following
lemma to find the p.d.f. of the fractional part of the
sum of two independent random vectors.

Lemma 2. Let X,,X; be any two independent and
continuous random vectors over [0, 1)*, with the p.d.f.
fx,(x) and fx (x). Let Y = X; + X; mod 1, and
fy(¥) be the p.d.f. of Y. Then for each y € (0, 1)F,

21

fy(y)= J;O /x“j.y Ix, (6 +y - x)fx, (x)dx

Proof. The p.d.f. of Z = X; + X, can be expressed
as

h(z) = / fx,(z - x)fx, (x)dx, 2 € [0,2*.
Xe[o,1]*

Lemma 2 follows from this and that the p.d.f. of
Y=Zmodl1lis

21

) =Y ki +y), ye(0,1)to

=0

Let X be a random vector over [0, 1]*, with the
p.df. fx(x) representing any k-dimensional real-
ization of a RNG. This assumption is not realistic
because any RNG can only generate finite points in
[0,1). Any theory based on the assumption of exist-
ing RNG with a p.d.f. is only approximate. However,
1t can greatly reduce the need for the exact compu-
tations with discrete values and it should shed some
light on the justification of the combination genera-
tor.

The following theorem shows that the fractional
part of the sum of two independent “nearly” uniform
random vectors will produce a distribution whose
p.d.f. is closer to uniform distribution.

Theorem 1. Let X;,X; be two independent ran-
dom vectors over [0,1]%, with the p.d.f. fx, (x)
and fx (x). Let Y = X; + X3 mod 1, and ()
be the p.df. of Y. If |fx (x) =1 < ¢ and

1

1, () — 1| < €, then |fy ()~ 1] < €1 -ea.
Proof. Let

fx,(x)=1+4gx,(x), fori=1,2, (A)
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where gy (x) is the “deviation” of the p.d.f. of X;
from the uniform p.d.f. By the assumption of Theo-
rem 1, we have

lox,(x)| < €&, fori=1,2.

Lemma 2 states that the p.df. of Y = X; +
Xomod 1is

2%—1

= b +y— x)dx.
fy(y) ,-g/xeA,,ny(J y —x)fx, (%)

Substituting (A) into the formula above, for each
term 5 =0,1,2,...,2%F — 1,

/ fx,(6 +y —x)fx, (x)dx
J(GAJ-'y

= / (1+ 9%, (6 +y - %)(1 + g%, (x))dx
XGA,-,y

/ ldx + / 9x, (x)dx
xEAj’y xEAj'y

+ / 9x,(6; +y — x)dx

+ / 9%, (6 +¥ - %) - 9, (x)dx.
xEAJ-_y

Letting u = §; + y — x in the third term and using
Lemma 1, we have
gxa(u)du.

/ 9x,(6 +y — x)dx = /
xEAj'y uEAj.y

Combining the all parts of fy (y) yields
fy ()

2k_1 2k

= Z / ldx + Z / 9x, (x)dx
j=0 /Xxea;y j=0 JXeA;y
2%-1
+ Z/ gxg(u)du
j=0 uGA,‘,y
2%-1
+ Z 9x,(6 +y —x) -9x, (x)dx.
j=0 "X€A;y
Since
2% -1
> / ldx = / ldx = 1,
j=0 YX€A;y xe[o0,1)*
and for i = 1,2,
2% -1

3 / 9x,(x)dx
j=0 VXEA,y

= / fx(x)dx —-1= 0,
xefo,1)x "~
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we have

2k-1

fx(y)=1+ §, /x ey 9x,(8 +y—x)-gx (x)dx.

Theorem 1 now follows easily because

Ify(y) -1
2k-1
< 2 [ lax,6 4y -9l lox, (lix
j=0 XGAJ-.y
21
S ;Lel‘j'y €1 fgdx
= ¢€1€62.0

Theorem 1 is a k-dimensional extension of a result
proved in Deng and George (1990). Essentially, they
proved the combination generator will improve the
“uniformity” of the generator and we show that it will
also improve the “independence” when considering
the joint distribution of any k-dimensional random
vectors.

Corollary 1. Let X, X, ...., X, be n independent
random vectors over [0, 1)¥, with the p.d.f. fx (),
fori = 1,2,..n. Let Y = Y, Xi mod1, and
fy(y) be the p.d.f. of Y.

1 If | fx (x) — 1| < €,i=1,2,..n, then |fy(y) —
1 <TTi- &

2. IfT]'_, & — 0, then Y converges to uniform
distribution over [0, 1}*.

3. In particular, if one of the X; is uniformly dis-
tributed over [0,1)F, then Y is uniformly dis-
tributed over [0, 1)*.

Proof. Corollary 1 follows easily from Theorem 1
and mathematical induction. O

According to Theorem 1 and its Corollary, one can
produce a random vector whose distribution is closer
to U[0,1]* by taking the fractional part of the sum
of several random vectors.

3 CONCLUDING REMARKS

Brown and Solomon (1979) showed that the com-
bination generator is at least as uniformly distributed
as the individual generators, using the techniques
on majorization. Their result holds for an arbitrary
symmetric norm (a symmetric norm is invariant un-
der permutation) over k-space. Marsaglia (1985)
proved, with a very special case, that the combi-
nation of two RNG’s produces not only “more uni-
formly” but also “more independent” sequence. On
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page 5 of his paper, Marsaglia (1985) introduced the
operation z -y which can be easily seen that

z-y=((z+y)mod m)+1

with m = 3. The distance measure used is the usual
Euclidean L, norm between two probability distri-
butions. Under the L, norm, he showed that the
distribution corresponding to the combination gen-
erator is at least as uniform and also as independent
as the individual generators. Clearly, the result ob-
tained by Brown and Solomon (1979) is stronger
than that of Marsaglia (1985). However, neither re-
sults demonstrates that the combination generator
actually tmproves over its component RNG’s. Fur-
thermore, no information about the “degree of im-
provement” is provided. We show that combining
two nearly uniformly distributed RNG’s will indeed
yield a RNG with a smaller maximum deviation. An
upper bound of the maximum deviation of the prob-
ability distribution of the combination generator is
given in Theorem 1.

We have provided some theoretical justification for
the practice of combining RNG’s by taking the frac-
tional parts of sums of RNG’s. It is shown to improve
not only the uniformity but also the independence of
the generator. The reader should be reminded that
all of the above mentioned justifications assumed the
independence between the two component genera-
tors. In reality, however, any sequence generated by
a RNG is a deterministic one. No independence in
either between RNG’s or within RNG can be safely
assumed. Deng, George and Chu (1989, 1991) con-
sidered combining generators that are not necessar-
ily independent and/or uniformly distributed. Their
empirical study suggested that the combination gen-
erator will indeed improve the uniformity and inde-
pendence of RNG’s, even if the component RNG’s
are highly correlated.

Recently, several authors have studied two exten-
sions of Lehmer’s classical random number generator,
namely (a) the multiple recursive generator (MRG)
and (b) the matrix congruential generator (MCG).
An excellent review on these and other generators
is given in L’Ecuyer (1989, 1990). Both MRG and
MCG have a long maximum period p* — 1, where k is
the dimension of the matrix for MCG and the degree
of primitive polynomial for MRG and p is a prime
number. Deng and Rousseau (1991) proposed ef-
ficient algorithms for finding MCGs and MRGs with
the maximum period. The MRG can be viewed as a
combination generator and its statistical justification
is given here. Brown and Solomon (1979), Marsaglia
(1985), L’Ecuyer (1988) and Deng, George and Chu
(1989, 1991) also gave some justification from a sta-
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tistical theory viewpoint. Deng (1991) has devel-
oped a general theory concerning the asymptotic uni-

formity and asymptotic independence for both the
MRG and the MCG.
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