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ABSTRACT

Some theoretical and empirical justifications for the
combination generators are given. It is shown that
adding enough random variates, whether or not they
are independent, the fractional part of their sum will
converge to a uniform distribution. Empirical study
shows that combination generators can even trans-
form some “bad” random generators into a much bet-
ter one.

1 INTRODUCTION

The ideal goal in generating random numbers is
to find an algorithm that will generate truly random
numbers. It is well-known, however, that truly ran-
dom and independent variates cannot be computer—
generated using any algorithms. In fact , as observed
by Park and Miller (1988), good uniform random
number generators are hard to find and some of the
popular generators display distinctly non-uniform
characteristics. Unfortunately, most of the standard
algorithms seem to have been proposed under the
false assumption that they could produce truly uni-
formrandom variates, when in fact some of them gen-
erate pseudo-random numbers which are significantly
non-random. Deng (1988) and Deng and Chhikara
(1991) showed that inaccuraciesin generated random
numbers are invariably carried over and sometimes
magnified when these numbers are transformed to
produce variates of interest.

Several improvements over the traditional congru-
ential method have been proposed in the literature.
Knuth (1981), Wichmann and Hill (1982), Marsaglia
(1985), L’Ecuyer (1988), Collins (1987), and Ander-
son (1990) all suggested the use of the combination
generator. Based on an his empirical study on sev-
eral popular generators, Marsaglia (1985) concluded
that combination generators seemed to be the best
generator. Some justifications are available for the
combination generator, but all are based on some
unrealistic assumptions. Horton (1948) and Horton
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and Smith (1949) showed that the sum of several
integer pseudo numbers modulo a positive integer
M converges to a discrete uniform distribution over
0,1,2,..,M — 1. Deng and George (1990) showed
that the sums, modulo 1, of nearly uniform continu-
ous random variables were much more uniform than
the individual variables. Brown and Solomon (1979),
Marsaglia (1985) and L’Ecuyer (1988) also provided
some theoretical support for combination generators
under the unrealistic assumption that individual gen-
erators were independent of each other.

One of our major results in this paper is to re-
move the independence assumption of the generated
sequence. In section 2, conditions are given for the
convergence of sum, modulo 1, of several possibly
dependent random variables to a U(0, 1) variate. In
section 3, we extend this result to a multidimensional
case. We show that if each component of a sequence
of continuous random vectors is “stretched out”, then
the fractional part of the components will converge to
independent uniform random variables. This theorem
provides a simple method for generating a sequence
of asymptotically independent U(0,1) random vari-
ables. The result of an empirical study is presented in
section 4. Simulation results show that the fractional
part of a sum of dependent uniform random variables
or non-uniform variates is quite close to U(0, 1), even
for a sample size as small as 4.

2 ASYMPTOTIC UNIFORMITY

Deng and George (1990) proves that the frac-
tional part of a sum of two independent “nearly”
uniform random variables produces a “nearly” uni-
form random variable whose distribution is closer to
a U(0,1) than the parent distribution. Specifically,
they proves the following theorem:

Theorem. Let X;,Xs,...,X, be n independent
random variables distributed over [0, 1], with p.d.f.
fe(zk),k=1,2,..n. Let Uy = Y 7 _, Xx mod 1, and
fu.(u) be the p.d.f. of Uy. If |fi(zx) — 1| < €,k =
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1,2,...,n, then
n
lfoa(w) =1 <[] e
k=1
and

Un -5 U(0,1), as ] a—o0.
k=1

The implication of this result is that one can gener-
ate a much more uniform variate by taking the frac-
tional sum of several “nearly” uniformly distributed
variates, and as will be seen in the empirical study re-
ported in section 4, that the number of terms needed
to achieve uniformity may be very small. However,
as we noted before, no computer-generated sequences
can be safely assumed to be independent of each
other. We will show next that the asymptotic unifor-
mity result can be proved without the independence
assumption.

The following lemma gives a simple relationship
between the p.d.f. of the fractional part of a ran-
dom variable and the p.d.f. of the original random
variable.

Lemma 2.1. Let Y be any continuous random
variable with p.d.f. fy(y). Then the p.d.f. of
U =Y mod 1 is given as

fuw)=)Y fr(u+m) ,0<u<l.

Proof. Denote the c.df. of U and Y as Fy(-) and
Fy(-), respectively. By the definition of U, we have

Fy(u) = ZPr(m <Y <u+m)

Z(Fy(u + m) — Fy(m)), for0 <u < 1.

Lemma. 2.1 follows easily by taking derivative w.r.t.
u on both sides. O

The following lemma states that if a random se-
quence converges to a U(0,1) distribution, then
adding any constant sequence a, and then taking
the fractional part will again converge to a U(0,1)
distribution.

Lemma 2.2. Let {U,,n = 1,2,...} be a sequence
of continuous random variables such that the c.d.f.
of Un, Fy,(t) converges uniformly to the c.d.f. of
U(0,1). Then for any sequence of constants {a,,n =
1,2,...}, we have

Yo = (Un +an) mod 1 -2 U ~ U(0,1).
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Proof. Since
Y, = [(Un mod 1) + (a, mod 1)] mod 1,
without loss of generality, we may assume
0<a, <1 and0<U,<1

From the definition of Y,,, we have, for 0 <u < 1,

Pr(Y, <u)

= Pr(0<Up+a,<u)+Pr(1<Us+a, <1+4u)

_ Fy.(l+u—an)—Fy,(1—-ay), fu<an
- Fy,(u—an)+[1- Fy,(1-ay)], ifu>a,
where Fy_(.) is the c.df. of U,. Since U, -
U(0,1) and U, is continuous random variable, we
have Fy, (t) = t+0o(1), for all t € (0,1). This implies
that

Pr(Y, <u)=u+o(l)—u asn—o0.0

Next, we will prove one of our key results.

Theorem 2.1. Let {Z,,n = 1,2,...} be a sequence
of continuous random variables with p.d.f. fz (2).
Suppose that the p.d.f. of Z,, fz,(z) converges
uniformly to fz(z), where fz(z) is the p.d.f. of a
continuous random variable Z. Then for any se-
quence of constants {(an,b,),n = 1,2,...} such that

lim, ., by = 0,

Un = (bnZn + ay,) modlLU(O,l) as n — 0o.

Proof. From Lemma 2.2, Theorem 2.1 follows im-
mediately if we can show that

by Zn mod 1 -4 U(0,1) as n — oo.

Without loss of generality, we may assume a,, = 0.
From Lemma 2.1, the p.d.f. of U, is given as

fu.(u) > fonza(u+m)
u+m, 1
= ;fzn(T)E

Zfz(———u z;m)% + (1)

/fz (z)dz + o(1)

= 140o(1)—1asn— oo.

Hence by Scheffé’s theorem, b,Z, + a, mod 1 4,
U(o,1).0

)
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Corollary 2.1. Let {Y,,n = 1,2,..} be a se-
quence of continuous random variables with p.d.f.
fv.(y). Suppose there exists a sequence of constants
{(an,bn),n = 1,2,...} such that lim,,__, b, = oo
and the p.d.f. of Z, = (Y, — a,)/b, converges uni-
formly to a p.d.f. fz(z). Then

Un =Y, mod1 -2 U(0,1), asn — co.

Proof. From Z, = (Y, — an)/bs, we have U, =
bnZn+a, mod 1. Corollary 2.1 follows directly from
Theorem 2.1. O

Corollary 2.2. Let Z be any continuous random
variable with p.d.f. fz(z). Suppose there exists a se-
quence of constants {(an,bn),n = 1,2, ...} such that
lim, . b, = co. Then

Un=(bnZ +a,) modli»U(O,l) as n — oo.

A simple application of Corollary 2.1 is to take
Y, = Yi_,Xi. If one can find “normalizing”
constants of Y;, as described in Corollary 2.1, then
Yo mod 1= Y7_, X; mod 1 -5 U(0,1). No inde-
pendence assumption among X is required. In fact,
even if all X; are identical, i.e. Xy = X, we have
Y iz X¢mod1l = nX mod 1 4, U(0,1), accord-
ing to Corollary 2.2.

There is a very simple explanation for the above
theorem and its corollaries. If a continuous random
variable is “stretched far out” (either by scaling or
adding several random variates), then the stretched
variate, such as Y;, in Corollary 2.1 and b, Z, +a, in
Theorem 2.1, should be (roughly speaking) uniformly
distributed, within each subinterval [m,m + 1) for
each integer m. Therefore U, =Y, mod 1 and U, =
(b2 + a,) mod 1 should converge to U(0, 1).

An interesting and somewhat surprising interpre-
tation of Corollary 2.2 is that the lower significant
digits of any continuous random variable tends to
be uniformly distributed. However, this observation
is not directly applicable to pseudo-random genera-
tors because no generator is capable of generating a
truly continuous variates.

3 ASYMPTOTIC INDEPENDENCE

In this section, we will propose a method to gener-
ate a sequence of uniform random variates which will
be asymptotically uniform U(0,1) distributed and
asymptotically independent of each other.

Lemma 3.1. Let (Y}, Y2) be any continuous random
vector with the joint p.d.f. fy, y,(y1,y2). Then the

1037

Joint p.d.f. of (U1,Uz) = (Y1 mod1,Y2 mod 1) is
given as

fu,va(u1,u2) = Y frva(ur + myuz + 1),
]

m
for 0 < uy,us < 1.
Proof. The proof is similar to Lemma 2.1. O

Theorem 3.1. Let {(Z1n, Z24),n = 1,2, ...} be a se-
quence of continuous random vectors with joint p.d.f.
f2,0,2:.(21,22). Suppose that fz,, z,.(z1,22) con-
verges uniformly to fz, z,(21, 22), as n — oo, where
fz,,2,(21, 22) is the joint p.d.f. of a continuous ran-
dom vector (Z,, Z;). Consider two sequences of con-
stant pairs {(ain, bin),n = 1,2,...},i = 1,2, such that
lim,, _, bin = 0o0. Let

Uin = (binZin + ain) mod1 i=1,2.
Then

1. Uin =5 U(0,1), as n — oo, fori = 1,2, and

2. Uyn and Us, are asymptotically independent.

Proof. Part (1) is proved in the Theorem 2.1. To
prove Part (2), we use Lemma 3.1. Without loss of
generality, we may assume a;, = 0 and a3, = 0. The
joint c.d.f., fu,, v,.(u1,u2), of (Uin,Us2s) is

szblnzln,bﬁnzﬁn (ul +m,uz + 1)

m |
= Y35 wAmutl) 1 1
T eI B \ T Than ) bin bm

ur+m uz+l) 1 1
3P ) —— +o(1
m | le,ZQ< bln b2n bln ( )

b2n

//le.zz(zlyZZ)dzle2+0(1)

14 0(1)—1 as n — oo.

Hence, Uy and Uy, are asymptotically independent.
a

Corollary 3.1. Let {(Y1n,Y2s),n = 1,2,..} be a
sequence of continuous random vectors with p.d.f.
f¥1n,Yaa(U1,Y2). Suppose there exists a sequence of
constants {(ain, bin),n = 1,2,..},i= 1,2, such that
lim, ., bin = 0o0. Let Zj, = (Yin — ain)/bin,i =
1,2. Suppose the joint p.d.f. of (Z1,, Z2n) converges
uniformly to a joint p.d.f. fz, z,(z1,22). Then

1. Uy = Yinmodl LN U(,1), asn —
0o, fori=1,2, and
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2. Urn and U, are asymptotically independent.

Proof. From Z;, = (Yin — ain)/bin, we have Ui, =
binZin + aj mod 1. Corollary 3.1 follows directly
from the above theorem. O

Corollary 3.2. Let (Z,, Z;) be any continuous ran-
dom vector with joint p.d.f. fz, z,(z1,22). Suppose
there exists a sequence of constants {(a;n,bin),n =
1,2,..}, i = 1,2, such that lim,__, bi;n = co. Let
Uin be

(binZ;i + ain) mod 1 for i =1,2.
Then

1. Ui, —drU(O,l), asn — o0, fori=1,2, and

2. Uyn and Uy, are asymptotically independent.
Remarks:

1. It is straightforward to generalize the above re-
sults (Theorem 3.1 and Corollary 3.1, 3.2) from
two joint random variables to more than two
random variables. The precise statements for
higher dimensions will be therefore omitted.

2. Similar to section 2, one can give a intuitive ex-
planation for the results proved in this section.
If a continuous random vector is “stretched far
out” (either by scaling or adding several ran-
dom vectors) in all directions, then “locally”
(within each dimension of the square of the par-
tition) the stretched vector should be (roughly
speaking) uniformly distributed in each coordi-
nate and the components should be independent
of each other.

Let {Xix,i1=1,2,..},k = 1,2,...,n be n sequences
of random variables representing n separate random
number generators. Define

},in:le'ky 1:1,2,
k=1

Let
Uin = Yin mod 1.

Under a very weak condition, it follows from Corol-
lary 3.1 that each variate in the new sequence
{Uin,i = 1,2,...} will follow approximately a uni-
form distribution, U(0,1). Furthermore, any two
variates in the sequence U;,, and Uj,, are asymp-
totically independent, for any ¢; # i3. The condition
required is the existence of “normalizing” constants
for Y;,n and Yi,, as described in Corollary 3.1. Note
that this condition is certainly much weaker than the
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usual requirements on normalizing constants needed
from central limit theorems. No independence or fi-
nite variance assumption is required. The removal of
independence assumption of random sequence is of
practical importance because no computer-generated
sequence satisfies the independence assumption. As
we have noted before, the previous discussion for ran-
dom vector (Uj, n, Uisn) can be easily extended to any
higher dimensions. Hence, we have produced a se-
quence of random variates which is approximately
1.i.d. U(0,1) distributed.

To make the previous discussion clearer, let us con-
sider the following diagram representing n random
variate generator:

1st RNG X1 ... Xin ... Xin
2nd RNG X12 e X,'lg e X,',g
nth RNG Xin ... Xijn .. Xign
Z::l Xik Yln “ee }/iin o Y'i;n
Yinmodl Uy, ... Uiyn ... Uin

For simplicity, take i; = 1 and i; = 2. Accord-
ing to Corollary 3.1, Uin LR U(0,1) and Usn =,
U(0,1), as n — oo. Furthermore, Uyn, and Uz, will
be asymptotically independent as n gets larger. Note
that neither “between generators” nor “within gen-
erator” independence is assumed. The only required
condition is the existence of normalizing constants
for (Yin,Y2n) as described in Corollary 3.1. Using
similar argument as above and the higher dimension
extension of Theorem 3.1, we can see that the ran-
dom sequence Ui, Usy, Usy,... will be approximately
iid. U(0,1), for large n.

Wichmann and Hill (1982) proposes a portable
random number generator by combining three
multiplicative congruential generators {X;,: =
1,2,..},{Y;,i=1,2,..} and {Z;,i = 1,2,...} as fol-
lows

Ui=X; +Y; + Z; mod 1.

This generator has a much longer period of gen-
erating cycle than a single multiplicative method.
However, Wichmann and Hill (1982) have not given
any theoretical justification. The previous discussion
(with n = 3) provides theoretical justifications for
the uniformity as well as independence of the U;’s.
The theorems in this section also suggest the follow-
ing modification:

Ui =01 X; +bY; + b3Z; mod 1,

where by, b, b3 are some large numbers. The above
generator will give good results even if (1) {X;,i =
L,2,..}, {Yi,i =1,2,..} and {Z;,i = 1,2,...} were
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“bad” generators and/or (2) three generators are cor-
related. In practice, however, one should not choose
b’s so large that we may lose some significant digits
in a computer multiplication. The empirical study
in section 4 also shows that b’s does not have to be
large.

If we are given a random number generator which
is not generating uniform and random sequence, then
the following simple procedure may be used to gen-
erate nearly uniform pseudo random variables that
are almost independent. Let {X;,i = 1,2,..} be a
random sequence generated from a generator. Define

n
Uin = EX(“I)"‘H' mod 1.
ji=1

Using a generalization of Corollary 3.1, and assuming
the weak condition holds, we can now show that the
random sequence {Uin,i = 1,2,...} is asymptotically
independent and identically U(0,1) distributed. In
section 4, we will demonstrate through extensive em-
pirical study that the proposed procedure will indeed
transform a very bad generator into a much better
one.

4 EMPIRICAL STUDY

In this section, we will present the result of an em-
pirical study that demonstrate that the asymptotic
results of the previous sections hold well even for a
very small sample size (e.g. n = 4). Suppose that U;
is generated from a “better” pseudo-random number
generator. We use the pseudo-random number gen-
erator provided by the IMSL routine.

We then “distort” X; either as a convex combina-
tion of U;

k k
Xi 2265 “Uisj, ZC,’ =10<¢i <1

j=0 j=0
or generate a non-uniform variate, say
X; ~ Beta(a, ).

It is obvious that {X;,i=1,2,...} is a poor uniform
random number generator. It is either correlated or
non-uniformly distributed. Using the results in pre-
vious sections, we will transform {X;,i = 1,2,...}
into a “good” uniform random generator. We will
show through our empirical study that either

n
Y‘- = an(i—l)-!'j mod 1

j=1

or
Z.' = b1X2|' + bzXz.'_l mod 1
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will yield a much better generator. The empirical
study also shows that our asymptotic theory works
pretty well even for small values of n,b; and b;. In
this study, we choose n =4, b, = 3 and b, = 5.

The empirical study procedure is as follows:

1. Generate U;,U,,... from the IMSL routine
RNUNF.
2. Define
(a) X; = (Z;ﬂc,- - Uitj), where0 < ¢; <
1, for0 < j <k, and Z;=ocj = 1, [Note
that if ¢o = 1, then X; = U;] or
(b) X; ~ Beta(e, ). [Note that if (a,8) = (1,1),
then X; = U]
3. Let ¥; = Xgi + Xai—1 + Xagi—2 + X4i—3 mod 1
4. Let Z; = 3X2; + 5X2i—1 mod 1

5. For each random sample X,Y, Z, perform the
following tests for randomness from IMSL rou-
tines:

(a) goodness-of-fit test,

(b) Good’s serial pair test, with lag=1,

(c) triplets test,

(d) d? test(Gruenberger and Mark (1951)).

6. Chi-square statistics of each test for X,Y and Z
are recorded.

7. Repeat steps (1) to (6) 10,000 times, and calcu-
late the percentage of Chi-square statistics (for
X,Y and Z) greater than the tabulated per-

centile of x2 values , with appropriate degrees
of freedom and « = 0.10,0.05, 0.01.

The following is a summary of how these tables are
obtained:

1. Four empirical tests using IMSL routines are
performed:

Test x? pair triplet d
routine | chigf pairs dcube dsqar
size 1,000 2,000 3,000 2,000

2. Each entry in Tables A-1 to A-4 represents the
percentage of the observed x2? larger than its
tabled x? values in 10,000 samples chosen. The
“distorted” generator is X; = 2;=0 ¢jUi4j and
four different sets of ¢; chosen as follows:

Experiment (o, €1, €2, €3, C4)
) (0.2,0.2,02,02,0.2)
() (0.1,0.1,0.1,0.1,0.6)
(3) (0.3,0.3,0.1,0.1,0.2)
(4) (0.4,0.2,0.2,0.1,0.1)
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3. Each entry in Tables B-1 to B-4 represents the
percentage of the observed x? larger than its
tabled x? values in 10,000 samples chosen. The
“distorted” generator is X; ~ Beta(w, ) and
four different sets of a, 8 chosen as follows:

Experiment (a, B)
(1) (0.6,0.6)
(2) (2.0,1.0)
(3) (1.0,2.0)
(4) (0.8,1.2)

From the above empirical study, we can see that
the random sequence X; (either }:;=0ch.-+]- or
Beta(a, §)) is far from being i.i.d. U(0,1) dis-
tributed. The percentage of the computed chi-square
statistics greater than the chi-square table value is
100 percent in every case generated. However, our
proposed transformation (both Y or Z) will yield
random sequence whose distribution is very close to
iid. U(0,1) distribution. The percentage of the
computed chi-square statistics greater than the chi-
square table value is very close to its nominal value.

5 CONCLUDING REMARKS

We have provided some theoretical justifications
for the asymptotic uniformity and asymptotic inde-
pendence of the combination generators without the
usual assumption of independence of the generators.
Theorems in this paper also give us a general method
of transforming a possibly bad generator into a much
better generator which will yield an asymptotically
independent and uniformly distributed random se-
quence. Our empirical study demonstrates that only
a small number of terms is required in our asymp-
totic theory to achieve a much more uniform random
sequence. As pointed out in Park and Miller (1988),
some generators provided by certain computer sys-
tem may not be very “random”. Combining several
generators into a single generator will provide some
protection against the possibility of “bad” system-
provided generators. Since uniform variate genera-
tion is the key to generating other commonly used
probability distributions, these results should be use-
ful in many applications.
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Table A-1: Percentage of x? statistics > x2, goodness-of-fit test

Xi = 214':0 cjUiy; Yi= Z;=1 X4(i—1)+j mod 1 Z; = 3X2i +5X32i_1 mod 1

a (1)-(4) Q) @ 6B @Gl@y @ 6 @
0.10 1.000 0.102 0.105 0.105 0.102 [ 0.099 0.097 0.099 0.098
0.05 1.000 0.053 0.052 0.054 0.053 [ 0.047 0.049 0.052 0.048
0.01 1.000 0.010 0.012 0.012 0.010 | 0.010 0.011 0.011 0.008

Table A-2: Percentage of x? statistics > x2, Good’s serial pair test

Xi = E;=o ciUiy; Yi= E;=1 Xa(i-1)+; mod 1 Zi = 3Xai +5X2i—1 mod 1

a (1)-(4) M @ ¢ @Wwlo @ 6 @
0.10 1.000 0.101 0.099 0.101 0.103 { 0.100 0.104 0.102 0.102
0.05 1.000 0.054 0.051 0.055 0.052 [ 0.055 0.053 0.053 0.054
0.01 1.000 0.011 0.011 0.014 0.011 | 0.013 0.010 0.012 0.012

Table A-3: Percentage of x? statistics > x2, triplets test

Xi=Yio0ciUivi Yi=Yj_1 Xa-14jmod1l  Z; = 3Xy +5X5_1 mod 1

o (1)-(4) @ 6 @0 @ @6 ¢
0.10 1.000 0.104 0.098 0.104 0.107 ] 0.106 0.102 0.104 0.105
0.05 1.000 0.054 0.049 0.054 0.056 | 0.055 0.054 0.052 0.055
0.01 1.000 0.011 0.011 0.013 0.011 | 0.012 0.011 0.011 0.010

Table A-4: Percentage of x? statistics > x2, d? test

X; = 2;-‘:0 ciUiy; Yi= Z;l:l X4(i-1)+; mod 1 Zi = 3X2i +5X9;—1 mod 1

a (1)-(4) M @ 6 @O @ @ (4
0.10 1.000 0.108 0.097 0.101 0.104 { 0.098 0.096 0.103 0.103
0.05 1.000 0.056 0.050 0.051 0.051 [ 0.049 0.047 0.053 0.049
0.01 1.000 0.013 0.009 0.011 0.010 | 0.010 0.010 0.010 0.009

Table B-1: Percentage of x? statistics > x2, goodness-of-fit test

Xi=2i06Uiri Yi=Yi_ ) Xag-1)4j mod1  Zi =3Xs +5X3-1 mod 1

a (1)-(4) M @ @ @Wwlon @ 6 @
0.10 1.000 0.102 0.104 0.104 0.101 | 0.116 0.100 0.100 0.108
0.05 1.000 0.051 0.054 0.0564 0.052 [ 0.060 0.050 0.050 0.053
0.01 1.000 0.011 0.009 0.009 0.010 [ 0.013 0.012 0.012 0.010

Table B-2: Percentage of x? statistics > x2, Good’s serial pair test

Xi= z;=o ¢iUiyj Yi= E;=1 X4(i-1)+j mod 1 Zi = 3X2 +5X9i—1 mod 1

o (1)-(4) Mm @ ¢ W1 @ G @
0.10 1.000 0.101 0.101 0.101 0.096 | 0.106 0.097 0.097 0.099
0.05 1.000 0.050 0.051 0.051 0.050 | 0.055 0.049 0.049 0.050
0.01 1.000 0.010 0.011 0.011 0.012 | 0.010 0.010 0.010 0.011
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Table B-3: Percentage of x? statistics > x2, triplets test

X = E;-l:o cjUiy; Yi= E;-l:l X4(i_1)+j mod 1 Z; =3X2i +5X2i—1 mod 1

3 DEO) 000 @l 0 0@
0.10 1.000 0.096 0.108 0.108 0.100 | 0.104 0.101 0.101 0.106
0.05 1.000 0.048 0.055 0.055 0.049 | 0.054 0.053 0.053 0.053
0.01 1.000 0.009 0.010 0.010 0.010 | 0.010 0.011 0.011 o0.010

Table B-4: Percentage of x2 statistics > x2, d? test

X; = E;:o cjUiy; Yi= Z;.!:l X4(i-1)4; mod 1 Z; =3X9; +5X2i—1 mod 1

Z Q=) 0o B @0 @ 0@
0.10 1.000 0.099 0.108 0.108 0.098 [ 0.113 0.098 0.098 0.100
0.05 1.000 0.049 0.055 0.055 0.049 { 0.058 0.048 0.048 0.051
0.01 1.000 0.011 0.011 0.011 0.011 { 0.011 0.009 0.009 0.011
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