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ABSTRACT

In this paper, we show that the use of the Box-
Muller method with Tausworthe sequences for gener-
ating normal deviates can produce pathological phe-
nomena similar to the Neave effect, which was found
to occur when linear congruential sequences and the
Box-Muller method are combined. Two examples of
the phenomena are given for Tausworthe sequences
in practical use. One of the examples demonstrates
that such phenomena possibly occur even with large-
period Tausworthe sequences. The paper also dis-
cusses the extension of the results obtained here
to Generalized Feedback Shift Register (GFSR) se-
quences, which are a variant of Tausworthe sequences.

1 INTRODUCTION

Most computer simulations require many random
variates from various types of distributions. Among
them, variates from normal distributions are most fre-
quently used, because of their central importance in
the field of statistics and probability theory. The Box-
Muller method is one of the most common techniques
for generating such variates. Because of its simplic-
ity, this method has recently been more and more
frequently used in computer simulations, in spite of
its use of such functions as logarithms and trigono-
metric functions.

In 1973, Neave (Neave 1973) pointed out that the
combination of the Box-Muller method and the con-
ventional linear congruential method produces unde-
sirable results in some cases. To be more precise,
the tail distribution generated by this combination
differs markedly from the true distribution. This re-
sult is significant, because in certain applications such
as rare event simulations the tail distribution should
be exact. One consequence is that we have to be
very careful in choosing the parameters of linear con-
gruential sequences for the Box-Muller method, or
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to use alternatives, such as shift-register-type pseu-
dorandom sequences, for the purpose. However, as
Ripley (Ripley 1987, p.59) states, “No general the-
ory has yet been developed for the sensitivity of” the
Box-Muller method to such alternatives.

Recently (Tezuka 1989, 1990), it has been shown
that Tausworthe sequences can be formulated as lin-
ear congruential sequences in terms of polynomial
arithmetic modulo two, and thereby leading to the
lattice structure of the sequences, which is theoreti-
cally similar to that of traditional linear congruential
sequences. In this paper, we will show that this de-
velopment can be used to analyze the effect of Taus-
worthe sequences on the Box-Muller method. The
result is that a similar effect to Neave’s can occur
with Tausworthe sequences. Moreover, we point out
that the effect is independent from the period size of
the sequences; in other words, the Neave effect can
occur, even if we employ long-period sequences.

The paper is organized as follows. Section 2
overviews the Neave effect for the combination of
linear congruential sequences and the Box-Muller
method. In Section 3, we show that the use of the
Box-Muller method with Tausworthe sequences pro-
duces similar phenomena to the Neave effect, and
then give some examples of the phenomena with
Tausworthe sequences in practical use. Finally, we
discuss the generalization of the theory developed
here to Generalized Feedback Shift Register (GFSR)
sequences, which are a variant of Tausworthe se-
quences.

2 OVERVIEW OF NEAVE EFFECT

First, we describe the definition of the Box-Muller
method, which is given as

Vi = +/=2In(U,)sin(270s),
Voo = /=2In(U;)cos(27Us),
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where U; and U, are independent uniform random
variates in [0,1) and Vj and V; are independent nor-
mal random variates from N(0,1). Note that U,
should not take the value of zero. For a 32-bit word-
size computer, |V;| and |V,| are bounded from above
by v/—21n(2-32) ~ 6.660.

Neave (Neave 1973) pointed out that some linear
congruential sequences interact adversely with the
popular Box-Muller method for normal random devi-
ate generators. Let the linear congruential sequence
be

Xi=aXi-1 (mod M).

The Box-Muller method is then given as

Vi vV —=2In(X;/M)sin(2maX; /M),
Vo = /=2In(X;/M)cos(2maX;/M).

As discussed in (Bratley et al. 1987, p.223), the plots
of (V1, V2) lie on a spiral. Hereafter, we deal only with
V1 unless otherwise specified, because similar results
follow for V2. Neave obtained the approximate range
of Vi with respect to the size of multipliers for lin-
ear congruential sequences; that is, the range is given
as [—y/21n(4a/3), \/21n(4a)] for V;. To sum up, the
smaller the value of a, the narrower the correspond-
ing range becomes. Specifically, when a is around
VM, V; takes values only in the approximate range
—4.5 through 4.5. Note that multipliers with a size
of around VM are very often employed due to their
portability in implementation (L’Ecuyer 1988). Since
the probability of the true normal deviates falling
within the tails, [-o00, —4.5] and [4.5, 00], is around
6 x 10~%, we can say that simulation using more than
108 normal deviates should not use the Box-Muller
method with such generators.

In Table 1, we list examples of the tail dis-
tribution for the entire period of sequence from
the most popular generator, a = 7° and M =
231 — 1, whose range was exhaustively calculated
as [—4.476239,4.717016] compared with the approx-
imate range [—4.475,4.715]. An important observa-
tion here is that a significant disparity starts from
around |V;| = 3.6, far ahead of the bound at which
the tail disappears. Neave explained these as due to
the discontinuities which occur at the zeros of the
equation

iz _
dx ~
where Z = /—2In(X)sin(2maX). Note that the

Neave effect occurs even when we use the sequence
in reverse order, i.e.,

% V—2In(X;/M)sin(2nX;—1/M)
= \/Tln(T;/T/I_)sin(%ra‘X,-/M),

0,
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Table 1: Frequencies of V; in the tail from the Box-
Muller method with linear congruential sequences,
z; = 16807z;—; (mod 23!—1), over the entire period

Range Observed | Expected Deviation
o E (0-E)/VE
3.70:3.71 9772 8955 8.6
3.71:3.72 7559 8632 -11.5
3.72:3.73 8887 8312 6.3
3.73:3.74 7566 8010 -4.9
3.74:3.75 7937 7715 2.5
3.75:3.76 7608 7430 2.0
3.76:3.77 6929 7157 -2.6
3.77:3.78 7507 6893 7.3
3.78:3.79 6080 6635 -6.8
3.79:3.80 6752 6390 4.5
-3.60:-3.61 12552 12906 -3.1
-3.61:-3.62 12278 12455 -1.5
-3.62:-3.63 11974 12004 -0.2
-3.63:-3.64 11692 11574 1.0
-3.64:-3.65 11447 11166 2.6
-3.65:-3.66 11244 10758 4.6
-3.66:-3.67 9357 10372 -9.9
-3.67:-3.68 10089 10007 0.8
-3.68:-3.69 10126 9642 4.9
-3.69:-3.70 8729 9298 -5.9

where a*a =1 (mod M), provided that the size of
a* is small (even if the size of a is large enough).

3 BOX-MULLER METHOD WITH TAUS-
WORTHE SEQUENCES

3.1 Definition of Tausworthe Sequences

A Tausworthe sequence u;,z = 1,2, ..., is defined as
follows (Tausworthe 1965):
L
u; = Easi+l2_la (1)
=1
where a;,7 = 1,2, ..., follows the recurrence relation

a; =c1ai—1+---+cpai—p (mod 2) whose character-
istic polynomial, M(z) = zP + c1zP~ 1+ .-+ ¢p, is a
primitive polynomial, and s is a constant representing
the decimation size.

Here, we describe the following formulation of
Tausworthe sequences: Let GF{2,z} denote the field
of all Laurent series of the form S(z) = 37" _ ¢z,
where m is an integer and ¢; is in GF(2). Then
we define an analogous version of linear congruen-
tial sequences in GF'{2,z}. Let o be a mapping from
GF{2,z} to the real field, defined as

a(S(z)) = S(2).
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A pseudorandom sequence u;, i = 1,2, ..., in [0,1) is
then defined as

fi(@) = (9(2)fi-1(z) + h(z)) mod M(z)
u; o(fi(z)/M(z)), ()

where g(z), h(z), M(z) and f;(z) are polynomials in
GF{2,z}. In practical situations, u; is expressed ap-
proximately by its truncated value, i.e. by summing
from some constant —L. In what follows, it is shown
that a Tausworthe sequence is a special case of the
above general class. Let M(z) = 2P +c12P~ 1+ -+¢p
be a primitive polynomial of degree p over GF(2),
and let h(z) = 0, g(z) = (z* mod M(z)), with
0<s<2P—-1,gcd(s,2?-1)=1,m=-1,and L
be the “word-size.” Suppose fo(z)/M(z) = ajz~! +
azz=%+ ... Then M(z) x (a1z~! 4 apz~2 4 ...) =
fo(z), i.e., no fractional terms exist in the LHS. Hence
a;,t =p+1,p+ 2, ... follows the recurrence relation
a; = €18;—1+--+cpai_p (mod 2) whose character-
istic polynomial is M(z). Therefore, the sequence is
written, for i = 1,2,.., as

L

-

u; = E ayi4127".
=1

This sequence is identical with the Tausworthe se-
quence defined above in (1).

Typically used Tausworthe sequences are the case
of s=pand M(z) =zP + 27+ 1 with ¢ < p/2, i.e.,

min(L,p)

u; = Z ap;+12°'.

=1

This type of Tausworthe sequence can be easily im-
plemented in both software and hardware (Bratley et
al. 1987). Some authors (Marsaglia 1976) describe
this generator with p < L by using matrix represen-
tation in the following way. Let S, and S; be p x p
matrices that produce right and left shifts, such as,

01 0 -~ 0
00 1 -0

S = e b
00 0 -1
00 0 -0

and let I be the identity matrix. The p-bit typical
Tausworthe sequence is then given as a sequence of
binary vectors,

ﬁ’ Tﬂ)T2ﬂ) ey

where T = (I + S7™?)(I + S¢) and S is a nonzero
binary vector.

Tezuka

3.2 Effect of Tausworthe Sequences on Box-
Muller Method

As Ripley states (Ripley 1987, p.59), “the best way
to understand the Neave effect is to note that we can
be concerned with large values of V; and V2, hence
with small values of U;.” Or, as Dagpunar explains
in (Dagpunar 1988, p.94), “a tail deviate can be ob-
tained only if U is small, but U3 is not so. However,
for a multiplier as low as 131, a small value of U;
always leads to a small value of U,.”

This observation also holds for the sequence de-
fined in (2); that is to say, when the degree of g(z)
in (2) is small, the values of V;, which is generated in
the same way as above by replacing linear congruen-
tial sequences with the sequences in (2), fall within
the bounded range, like the Neave effect. These
assertions can be made more quantitatively. De-
note u;(z) = fi(z)/M(z) for the equation (2), i.e.,
u; = o(ui(z)). And let d = deg(g(z)). We assume
that for small u;, /—2In(u;) is approximately flat
compared with sin(27u;4;). Then the value of u; such
that o(g(z)ui(z)) = 1/4 (or 3/4) gives the bound for
Vi. Since 2%u; < o(g9(z)ui(z)) < 2%*1y; from the
equation (2), the approximate peak of |V;| will ap-
pear for u; with 1/(4-2%+1) < u; < 1/(4 - 29) (or
3/(4-29) < w; < 3/(4-29)). (It is worth noting
that if d is greater than the word-size of a computer,
the range is determined by the latter only.) These
considerations can be summarized as follows:

Proposition 1 Let M(z) be the characteristic poly-
nomial and s be the decimation size for a Tausworthe
sequence. Then the approzimate range of Vy from the
Boz-Muller method with the Tausworthe sequence is
given as

[~\/2In(4 - 24/3),,/21n(4 - 24)]. (3)
Here d = deg(g(z)), where g(z) = z* (mod M(z)).

The validity of the above approximation can
be_ demonstrated as follows: Consider B(f) =
vV —2In(2-9-1¢t)sin(2xt) for ¢t > 0. By us
ing this, we can bound Vj, ie., mingsoB(t) <
vV —=2In(u;)sin(27u;41) < maxysoB(t) for any
(ui, ui41). Table 2 shows the minimum and maximum
values of B(t), which were numerically computed, and
the approximate range given in (3) for 1 < d < 15.
As easily seen, the approximation is fairly good.

We should notice that the essential factor deter-
mining the approximate range is not the decimation
size s, but the degree of g(z)(= z* (mod M(z))).
Also note that in the case of those Tausworthe se-
quences which are 2-distributed with L-bit resolution
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Table 2: Validity of the approximate range [LB,UB]
of V; given in (3), where LB= —/2In(4 -24/3) and
UB= /2In(4 - 29).

(d [ mnB() | LB [ UB [ maxB(?) |

1 | -1.833438 | -1.400 | 2.039 | 2.371154
2 | -2.178031 | -1.829 | 2.354 | 2.644382
3 | -2.475467 | -2.175 | 2.632 | 2.892840
4 | -2.740960 | -2.473 | 2.884 | 3.122076
5 | -2.982988 | -2.739 | 3.115 | 3.335880
6 | -3.206840 | -2.982 | 3.330 | 3.536961
7 | -3.416078 | -3.206 | 3.532 | 3.727327
8 | -3.613236 | -3.415 | 3.723 | 3.908513
9 | -3.800189 | -3.612 | 3.905 | 4.081721
10 | -3.978373 | -3.799 | 4.078 | 4.247916
11 | -4.148918 | -3.978 | 4.245 | 4.407881
12 | -4.312727 | -4.148 | 4.405 | 4.562265
13 | -4.470542 | -4.312 | 4.560 | 4.711613
14 | -4.622974 | -4.470 | 4.709 | 4.856386
15 | -4.770540 | -4.622 | 4.854 | 4.996978

(Fushimi and Tezuka 1983, Tezuka 1987), the degree
of g(z) is always large enough, where L is the word-
size of a computer.

Similar arguments give the other peaks approxi-
mately for u; with p/(4 - 29+1) < w; < p/(4 - 29),
where p is an odd integer with 0 < p < 29, where
d = deg(g(z)). These peaks might yield irregularities
in the tail of V}. Theoretically, they correspond to
the discontinuities which Neave found for the linear
congruential case.

3.3 Practical Examples of the Effect

In this section, we give two practical examples in
which a Neave-like effect occurs. Both are typical
Tausworthe sequences, i.e.,

min(L,p)

=1
Us; = Z ap;+12 .

=1

Example 1 The following Tausworthe sequence ts
a component of the combined generator, SUPER-
DUPER, proposed in (Marsaglia 1976). From the
discussion in Section 3.1, the gemerator is writlen
as M(z) = 232 4+ 2% 4+ 1,9(z) = 232 = 215+ 1
(mod M(z)),h(z) =0, and L = 32 in (2). Note that
M(z) is not irreducible, i.e., M(z) = (2 + z'% +
215 4 213 4 212 4 10 L 09 4 08 L o7 4 26 4 g4y 224
(2 + 2%+ 27 + 22 + 1). So, the mazimum pos-
sible period is (22* — 1)(2'! — 1) and thereby almost
all initial values give the mazimum period. Ezhaus-
tive calculation shows that for this generator the range
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Table 3: Frequencies of V; in the tail from the
Box-Muller method with the Tausworthe sequence,
SUPER-DUPER, over the entire period

Range Observed | Expected Deviation
o E (0-E)/VE
3.65:3.66 21345 21517 -1.1
3.66:3.67 21053 20757 2.0
3.67:3.68 19716 20014 -2.1
3.68:3.69 20025 19284 5.3
3.69:3.70 18138 18622 -3.5
3.70:3.71 17716 17910 -1.4
3.71:3.72 17372 17265 0.8
3.72:3.73 17336 16625 5.5
3.73:3.74 15791 16020 -1.8
3.74:3.75 15295 15431 -1.0
-3.85:-3.86 9757 10157 -3.9
-3.86:-3.87 9952 9775 1.7
-3.87:-3.88 9959 9405 5.7
-3.88:-3.89 8238 9045 -8.4
-3.89:-3.90 8832 8718 1.2
-3.90:-3.91 9117 8349 8.4
-3.91:-3.92 7026 8048 -11.3
-3.92:-3.93 8265 7735 6.0
-3.93:-3.94 6880 7438 -6.4
-3.94:-3.95 7451 7151 3.5

into which Vi falls is [—4.622979, 4.856391], while the
approzimate range from (3) is [—4.622,4.854], since
deg(g(z)) = 15. This shows that the range defined in
(3) gives a good approrimation. Table 3 lists exam-
ples of the tail distribution for this generator over the
entire period. This shows some irregularities in the
tail, which are similar to those in the case of linear
congruential sequences.

Example 2 Here, we employ two Tausworthe se-
quences, whose parameters are M(z) = 2"+ z9 41,
g = 7,15, with s = 127 and L = 32. Hence
deg(g(z)) = 7 or 15. The period of the sequence
is equal to 2127 — 1, since M(z) above are primi-
tive polynomials. The range for the case of ¢ =
7 is at most [—3.417,3.728] from minsso B(t) and
maxso B(t) in Table 2. For ¢ = 15, the range is at
most [—4.771,4.997] also from Table 2. Notice that
the bounds given by minsso B(t) and max;so B(t) be-
come tight when the period is large enough.

4 DISCUSSION

In this section, we discuss the extension of the results
presented in the foregoing sections to the combina-
tion of the Box-Muller method and GFSR sequences,
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which are a variant of Tausworthe sequences. A
GFSR sequence u;,i = 1,2, ..., was originally defined
as follows (Lewis and Payne 1973): Let a;,i = 1,2, ...,
be a binary sequence in GF(2) whose characteristic
polynomial, denoted by M,(z), is primitive. Then

L

u; = Z aqi2”,

=1

where d is a constant between 1 and 2 — 1 and L <
p. Denote b; = ay;, for i = 1,2,.... Let My(z) be
the characteristic polynomial of b;,7 = 1,2, .... Then
the above sequence u;,i = 1,2, ..., can be written by
the formulation in (2) with M(z) = My(z), h(z) =
0, and g(z) is a primitive root modulo M;(z) such
that g9(z) =z (mod M;(z)). Note that in this case
My (z) is always irreducible, but not primitive unless
d is coprime to 2P — 1. Therefore, we conclude that a
Neave-like effect also occurs with the original GFSR
sequences.

Next, we consider a more general case of GFSR

sequences:
L

_ -1

u,-_E a;,4+i27,
=1

where ji, 1 =1,...L, are integers between 1 and 2° — 1.
Note that L < p (otherwise, a linear dependence rela-
tion appears between the column bits of u;). For sim-
plicity, we assume that L = p. As shown in (Tezuka
1987, 1990), the sequence can be written equivalently
in the matrix representation as

ﬂ;Tﬁy --'7Tﬂ'ﬁ1 LS )

where T is any nonsingular p x p matrix over GF(2).
The open question is how complicated the irregular-
ities in the tail distribution become for this general
case, where unlike in the case of the original GFSR
sequences discussed above we cannot make such as-
sumptions as that the mapping y = T’z is written as
a linear mapping in GF{2,z}.
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