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ABSTRACT

In this study we modify an earlier approach developed
for reducing the bias of the estimator for the mean
response in simulation caused by the initial conditions.
We try to balance the bias of the estimator in a
simulation run by imposing a bias in the opposite
direction in a companion run by suitably setting its
initial conditions. We present analytical results for the
bias of our estimator for AR(1) and M/M/s processes.
We suggest making independent replications of the pairs
of runs to construct a confidence interval for the mean
response. We present some empirical results about the
coverages and precisions of the confidence intervals. The
results suggest that the idea of balancing a bias with a
bias in the opposite direction is promising.

1 INTRODUCTION

The statistical estimation of the output response in
steady state simulations has been widely studied.
Commonly, the problem of constructing a confidence
interval (c.i.) for the mean response is addressed. In
classical statistical analysis the sample mean and the
variance of the sample mean estimated from independent
and identically distributed (i.i.d.) random variables are
used to construct a c.i. for the mean. The estimation
problem in simulation is nontrivial because the output
process obtained from a simulation run is usually highly
correlated. Many approaches in the literature transform
the simulation output in order to obtain a new process
that is approximately uncorrelated. For a review of
different approaches, the reader is referred to Bratley,
Fox, and Schrage (1987), Fishman (1978), Law and
Kelton (1991), and Schmeiser (1990). Many of the
developed approaches have desirable asymptotic
properties. Sargent, Kang, and Goldsman (1988)
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demonstrate that small sample properties of an approach
may be quite different from its asymptotic properties and
approaches that have better asymptotic properties do not
necessarily have better small sample properties.

Another important problem in steady state simulation
output analysis is the effect of initial conditions. In
order to estimate the steady state performance of a
system we need to observe the system in steady state.
However, we have to initialize a simulation run from
some state and it usually takes the run a while to reach
steady state. A common approach is to allow the
simulation to run for a while before starting to collect
statistics. Many approaches have been developed to
detect when the effect of initial conditions is eliminated.
Wilson and Pritsker (1978a, b) review some of these
approaches and they suggest a procedure for evaluating
the performance of the approaches. Gafarian, Ancker,
and Morisaku (1978) conducted an empirical study and
concluded that none of the rules they tried for detecting
steady state was satisfactory. Schruben (1982) and
Schruben, Singh, and Tierney (1983) develop tests to
detect the presence of initial transient effects in
simulation output.

If the effect of initial conditions could be eliminated
quickly, then constructing a c.i. for the mean response
would be trivial. One could make independent
replications of the simulation run and construct a c.i.
using the i.i.d. observations obtained from each
replication. The problem with this approach is that one
has to incur the effect of initial conditions in each
replication. Kelton and Law (1983) develop an approach
where they try to detect the start of steady state. They
make independent replications and construct a c.i. for the
mean response after eliminating some initial
observations from each replication. Kelton (1989)
suggests that stochastic initialization of different
replications may reduce the effect of initial conditions
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and lead to the elimination of fewer initial observations.
Based on a first-order autoregressive (AR(1)) process,
Kelton and Law (1984) also present results in favor of an
independent replications approach that deletes some
initial observations.

Deligonul (1987) develops an approach to reduce the
initial bias. The approach is called antithetic bias
reduction (ABR) where the bias in a simulation run is
tried to be balanced with a counter bias in a companion
run. Our approach is a variation of the ABR approach.
We review the ABR approach, develop our approach and
present some analytical results in the next section. In
section 3 we report some empirical results and we
present our conclusions in section 4.

2 DEVELOPMENT OF THE APPROACH

In this section we first briefly review the ABR approach
and then discuss our approach and present some
analytical results.

2.1 The ABR Approach

Let X denote the initial state of the system in a
simulation run and X1» X9, .., X, be the output
stochastic process obtained from the simulation run. Let

_ m
X =% Xj/m given Xg =x". Assuming that the

=1
steady state mean of the process is |, the bias of X for

W is x"-i and an estimate for this bias is x"- )_(1. A bias
in the opposite direction can be created by initializing a

simulation run at x* = )_(1 + ()_(l-x') = 2)_(1-)(' and
_ m

obtaining m new observations. Then X, = 3 Xj/m
=i

given X =x" is found and X* = (X; + X,)/2 is used
as the estimate for pu. Deligonul shows that for an
AR(1) process the ABR approach reduces the bias
quadratically with the number of observations whereas
the bias reduction is linear with the number of
observations in a single run of the simulation.
Deligonul also presents favorable results for a machine-
repair type closed queuing system.

2.2 A Variation of the ABR Approach

The ABR approach would work well when x* and x” are
equally biased on opposite sides of the mean and the
convergence toward the mean is monotonic and at an
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approximately equal rate from x* and x™. The
monotonic convergence is also assumed by others and
seem to hold for a wide range of systems, especially
queueing systems (see Kelton and Law 1983, 1985). In

order to have x* and x™ equally biased on opposite sides
of u, however, we need to have

x-p = pxt = p-(2Xx7)
or taking the expectations

X -p= u-ZE()_(l) +x”

or E()_(l) = u which may approximately hold when the

number of observations, m, in each run is large. In
simulation studies, however, having a sufficiently long
run length may be too costly.

Consider generalizing the determination of the initial
conditions of the companion run as

X+=W(il- X-) +x° (1)

where w > 0 is a weighting factor. w = 2 corresponds to
the ABR approach. Using (1), in order to have x* and
X" equally biased on opposite sides of . we need to have

X -u= u—w()_(l-x') -x"
or taking expectations and rearranging

2(1-x) = wE(X 1) - X).

We would like to set w=2(u-x")/(E(Xy) - x°). If the
convergence to steady state is monotonic then we would

have either x™ > EO_(I) 2uporp E()_(l) 2 x" and in

both cases w > 2. w=2 corresponds to E()_( 1) = 1 which,
as discussed before, is the necessary condition for the
ABR method to keep x* and x™ at equal distance from p
on opposite sides of .

Using w we can determine x* and as in the ABR
method we can initialize a new simulation of m

+

observations at x™ and obtain )_(2. Then using X* =

()_(1 + )_(2)/2 we can obtain a point estimate for the

mean. We will refer to this weighted version of the
ABR method as the WABR method.

In a simulation study neither p nor E()_( 1) is known or
otherwise there would be no need to use simulation for
the estimation of p. However, we may try to estimate
w from the output of the simulation. We next discuss
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finding w in conjunction with a first-order autoregressive
process (AR(1)) and the M/M/s queueing systems.

2.2.1 AR(1) Process

Suppose that the output of simulation follows an AR(1)
process which is defined by the following recursive
relation:

Xi=p+oa Xjq-HW+eg; fori=1,2,..
where 0 < a < I,E(ei)= 0 for all i,

ey doc if i=j

Eej¢5) = { 0 if i#]
and X is the initial condition.

For the AR(1) process, it can be shown that (see
Turnquist and Sussman 1977) the expected value of the

sample mean of first m observations, given initial
conditions Xy , is

E(X) = 1+ (X - ) o (1-a™)(m(1-0)) .
Applying this to )_(1 which is obtained by using Xg= x"

and to )_(2 which is obtained by using X0=w()_(1- X)+x"
we obtain

EXp) =+ (x - ) o (1-0™) / (m(1-0)) and

E(Xp) = p+ (WE(X)) - (w-1) X"~ wyou(1-0™)/(m(1-00))
Letting y (m) = a (1-a™) / (m(1-a1)) we obtain

EXp) =p+ (- W) ¥ (m) @

E(Xp) =+ (Wl + (x” - pyy(m)] - (w-1)x"-1)} y(m)

or
E(Xp) = i+ {(w-D- ) - wl- X m))ym) ~ G)

Using X* = (X +X,)/2 and Bias (X*) = E(X*) - p and

substituting (2) and (3) we obtain Bias (X*) = p + {x”

“pA (WD -xT) -w( - x7) ym)) f(m) /2-p or
Bias (X*) = {(1t - x” )}(w-2-wy(m))}y(m) / 2

In order to eliminate the bias in X* we need to have

w-2-wy(m) =0 or w* =2/(1-y(m)). Substituting the

value of y(m) we obtain

W = 2m(1-0) @

" m(1-0)-a(1-0™)
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If we know the value of a for an AR(1) process then we
can eliminate the bias of X* for a value of m as small as
1. For m = 1, for example, w* values are 20, 40 and
200 for o = 0.90, 0.95, and 0.99, respectively.
Obviously, we would not know the value of o in
advance. However, we can estimate o from a simulation
run and use the estimated value to find w*. We employ
such a procedure and present some empirical results in
section 3.

In the expression for E()_(z) we treated w as a constant
but we actually need to estimate w and therefore it is a

random variable. If w and )_(1 are obtained from the

same run, there will be some correlation between them.
This correlation was not accounted for in solving for

E(X;) and this may cause the bias to be somewhat
different from 0. Obtaining w* from an independent run
would avoid such a problem.

The variance term for the sample mean for an AR(1)
process that has fixed initial conditions is independent of
the initial conditions and only depends on V(g;) = 02,
o, and the number of observations, m (see Deligonul
1987). However, in our case and for the case of the
ABR approach, the initial conditions for the companion
run, x*, is a random variable and the variance of the
sample mean depends on the variance of the initial

conditions. It can be shown that V()—(z) 2 V()—Zl). Since
X* = (X1 + X,)/2, we have V(X*) = [V(X;) + V(X,) +

2Cov()—(1 , )_(2)]/4. The covariance term in the
expression for V(X*) will be negative since we induce a

negative correlation between )_(1 and )_(2. In spite of the

above properties, it is not clear if the variance of the
sample mean increases or decreases with ABR and
WABR methods compared to making a single run.

2.2.2 M/M/s Queue

We now consider the M/M/s queueing system where the
time between arrivals is exponentially distributed with
mean rate A and each of the s identical parallel servers
have exponentially distributed service times with mean
rate . Kelton and Law (1985) analyze the transient
behavior of this system. Specifically, they define
P (n,i) as the probability of having i customers in the

system at the time of arrival of the n’th customer given
that k customers were present at time O (where i includes
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the just arriving customer). They develop an iterative
algorithm to find the values of Py (n,i) and using these
values they calculate the expected delay of customer n.
Consider the approach we developed in section 2. We
may adapt the approach to an M/M/s system by first
making a run for m service completions starting the
simulation with x~ customers in the system. Then
using a suitable weight, w, and the average number of
customers in the system obtained from the first run, say

ltll(m), we can find the starting conditions, x*, for the

companion run. Here, we will have to round x* to the
nearest integer since we can only consider an integer
number of customers present in the system at time 0.
From the companion run we obtain the average number

of customers in the system, ﬁz(m). A point estimate,
N*(2m), for the mean number of customers in the

system can be found by N*(2m) = (N (m) + N2(m))/2.
In order to find a suitable value for w in this procedure
we approximate the number of customers in the system
by an AR(1) process. Specifically, letting N, denote the
number of customers found in the system by the n’th
arriving customer, we approximate the {Np, n=1,2,...}
process by an AR(1) process. We estimate the lag 1
correlation of the number in the system process using a
jackknife estimator and substitute this value for o in
expression (4) to find a value for w*.

We demonstrate the performance of the above
procedure analytically using the transient results
developed by Kelton and Law (1985) for the M/M/s
system. Using the Py (n,i) values we can compute the
expected number of customers the n'th arriving customer
will find in the system given that originally there were k

customers in the system. Denoting this value by
E, (N}) we have

k+n
E (N) = 2 (i-1)Py(n,i). Using the sequence E (N,
i=1
Ep(N3), ..., E.(N,), where x~ =k in this case, we
determine the lag 1 correlation, o, and obtain w* from

(4). We then find x*=w*(E; (Ny(m))-k)+k where

_ m

E (N 1(m)):Z’Ek(Ni)/m. Rounding x* to the closest
i=1

integer we get k', which is the initial condition for the

companion run, and we find Ek'(Ni) i=1,2, ..., m and

Kéksalan and Basoz

Ek.(ﬁz(m)). Then the expected value of the estimator

we suggested for the steady state mean number of
customers in the system can be found as

Ep (N*(2m)=(E; (N 1(M)+Ey(Np(m))/2.  Denoting the
steady state mean number in the system by N, the bias
of N*(2m) is Ej (N*(2m))-N. The bias of N*(2m) is
given in Table 1 for different values of m for M/M/1,
M/M/3, and M/M/5 queueing systems having traffic
intensity p=0.90 and arrival rate A=1. In Table 1 we
also present the bias for the estimator of the ABR
method as well as the bias for the estimator that is
obtained using a single run. Total number of
observations in all cases is 2m, where WABR and ABR
methods make a pair of runs each having m
observations. The results of Table 1 show that WABR
method reduces the bias slightly more than the other
methods in all cases. However, there remains a
substantial bias in M/M/3 and M/M/5 systems. This
probably indicates that the AR(1) approximation does
not sufficiently capture the properties of the M/M/s
models in terms of the initial bias. Table 1 also
presents w* values and as expected these values approach
to 2 (the w value for the ABR method) as m increases.

Table 1: Percentage Bias of the Estimators for the
Expected Number of Customers in the System

Model 2m WABR ABR_Single Run

200 -29.0(2.36)1 340 -349
400  -16.1(2.27) 200 -220

M/M/1 800 -7.6 (2.18) 9.8 -122
1600 -3.2 (2.10) 4.0 -6.2
2000 -24 (2.09) -2.9 -5.0
4000 -1.0 (2.04) -1.1 -2.5
200 -42.6 (2.29) 459 -46.2
400 -31.7 2.23) 344 355

M/M/3 800 -24.2 (2.16) 2257 2713
1600  -20.1 (2.09) 225 222
2000 -19.3 (2.08) -19.7 212
4000  -17.9(2.04) -18.1  -19.1
200 -47.1 2.37) -513 520
400 -39.6 (2.28) 425 -436

M/M/5 800 -34.2 (2.19) -358  -371
1600 -31.2 (2.11) 318  -33.1
2000  -30.7 (2.09) -31.1 -323
4000 _ -29.7 (2.04) -298 -30.1

1 . . *
Values in parenthesis are w~ values
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3 EMPIRICAL RESULTS

We present some empirical results for the AR(1) and
M/M/1 processes. We do not consider M/M/3 and
M/MY/5 processes since the bias of the estimator of the
WABR method is high for reasonable run lengths for
these processes.

In the experiments we used the first of a pair of runs
to compute both w* and the sample mean although this
may cause some undesirable correlation between them,
We used the average of the sample means obtained from
the two runs as an estimator of the mean response. We
repeated this procedure b times and obtained b i.i.d.
estimators from which we constructed a 90% c.i. We
computed a new w* from the first run of each pair of
runs. Notice that the only major source of error in this
c.i. is the bias in the point estimators for the steady
state mean.

For the AR(1) process we simulate, we use p=8.12,
V(ej)=62=1, @=0.90, and X(=0. We use the c.i.
coverage and average relative precision (ARP) (where
relative precision is the c.i. half length divided by the
absolute value of the estimator) as the performance
measures. Table 2 gives the coverage (proportion of 50
c.i.'s that cover the mean) and the ARP for different
sample sizes for the WABR and ABR methods as well as
for the independent replications of a single run. For the
experiments of Table 2 b=10 is used and each method
uses a total of 2mb observations for each c.i. Notice
that the WABR method produces satisfactory results
even for small sample sizes. The results for the ABR
method becomes satisfactory for larger sample sizes.
Making independent replications of a single run yields
poor results except for very large sample sizes. We also
tried to reduce the ARP for smaller sample sizes by
sequentially increasing the number of replications, b. In
this case, the coverage for the sample size of 40
deteriorated while sample sizes of 80 and 100 still
yielded satisfactory results. This indicates that there
remains some bias in the estimator for only the sample
size of 40. The results also compare well with the
extensive test results reported by Sargent et al. (1988)
using several methods. We cannot directly make
comparisons since the parameters used for the AR(1)
process are not the same.

We conducted similar experiments for the M/M/1
system having p=0.90 and constructed c.i.'s for the mean
number of customers in the system. Table 3 gives the
results of these experiments and the type of information
given in this table is similar to that of Table 2. Each
c.i. is constructed from 10 replications and coverages are
out of 50 c.i.'s. WABR method's results again seem
satisfactory even for small sample sizes. For example,
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for the sample size of 200 we obtain a coverage of 0.84
and an ARP of 0.29 with a total sample size of 2,000 in
10 replications. Similarly, the coverage and ARP are
0.90 and 0.30 for a sample size of 400 which uses 4,000
total observations in 10 replications. Kelton and Law
(1983) present results for the same problem where they
make independent replications and truncate the heavily
biased initial observations from each replication. They
obtain a high relative precision and a 0.82 coverage
using a total sample size of about 10,000.

Table 2: Coverages and ARP's of 90% C.1L.'s for the

AR(1) Process

Method
WABR ABR Single Run
2m Cov, ARP Cov. ARP Cov. ARP
40 082 0.19 048 0.17 0.02 0.11

80 092 0.12 080 0.11 0.08 0.08
100 094 0.12 094 0.10 020 0.07
200 08 0.08 0.88 0.07 0.54 0.05
400 096 0.05 094 005 0.60 0.03
800 08 0.03 086 0.03 0.82 0.02
1600 092 0.02 092 002 0.86 0.02

2 2 2_0.02 0_0.01

Table 3: Coverages and ARP's of 90% C.1.'s for the
M/M/1 Queueing System

Method
WABR ABR Single Run
2m Cov, ARP Cov, ARP Cov, ARP
200 0.84 029 0.62 0.25 0.36 0.30
400 090 030 0.78 0.23 0.60 0.27
800 0.86 0.26 090 0.21 0.68 0.23

1000 094 021 096 0.19 0.84 0.21

We also made some runs for the M/M/1 system
having p=0.95. For sample sizes of 400 and 800 we
obtained poor coverages. For a sample size of 1,600
however, we obtained a coverage of 0.86 (out of 50
c.i.'s) and an ARP of 0.28. We again used 10
replications for each c.i. and hence a total number of
16,000 observations. In their corresponding results,
Kelton and Law (1983) obtained a high relative precision
and a coverage of 0.70 using a total sample size of about
12,500.

We also used a sequential approach in conjunction
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with the WABR method where we kept increasing the
number of replications until the relative precision
satisfied a preset upper bound. We applied this procedure
to the M/M/1 system having p=0.90 and we tried several
sample sizes. The coverages somewhat deteriorated
when we forced a relative precision of 0.15 and 0.10.
This indicates that there is some bias in the estimators
used.

4 CONCLUSIONS

In this paper we addressed the problem of initialization
bias in steady state simulations. We tried to balance the
bias incurred in a run with a bias in the opposite
direction so that an estimator obtained from such a pair
of runs is approximately unbiased. We presented both
analytical and empirical results to test the performance of
our approach.

Our analytical results indicate that the approach yields
satisfactory results for the AR(1) and M/M/1 processes
but relatively poor results for the M/M/3 and M/M/5
processes. Our empirical results are also satisfactory for
the AR(1) and M/M/1 processes though some bias seem
to be left in the estimators for small sample sizes.

Overall, it seems that the idea of balancing negative
and positive biases is promising and it may lead to
obtaining valid c.i.'s using relatively short independent
replications of a simulation. The work of Kelton (1989)
is also based on a similar reasoning where he
stochastically chooses different initial conditions for
independent replications so that the biases in different
runs would balance each other. An important issue in
our approach is the determination of the weight which is
used to find the initial conditions for the second run of a
pair of runs. Further research in the determination of
this weight may improve the performance of the
approach and make it applicable for a variety of systems.
It may also be worthwhile experimenting with
estimating w* from a relatively long independent run and
then using the same value for all pairs of runs.

We demonstrated our approach for systems having a
single state variable but it is directly applicable to
systems having more than one state variables. The only
requirement for any system to be applicable is to have
the computed initial values for all state variables for the
companion run to be feasible. Even if some of these
values correspond to infeasible states, it is still possible
to initialize these state variables to the closest feasible
values.

It may be worthwhile investigating a combination of
our approach with approaches that analyze simulation
output using a single long run. Instead of making a
single long run we may make two long runs initializing
the second run as suggested in this paper. This may
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improve the quality of the point estimator. Then, we
may arrange the observations in these two runs in such a
way that they will be suitable for applying methods that
are developed for a single long run.

ACKNOWLEDGEMENTS

We would like to thank Professor David Kelton for
providing the codes of the programs for calculating the
transient results for the M/M/s queues and to Professor
Bruce Schmeiser for his helpful suggestions in an earlier
version of this paper.

REFERENCES

Bratley, P., B.L. Fox, and L.E. Schrage. 1987. A Guide
to Simulation. New York: Springer-Verlag.

Fishman, G.S. 1978. Principles of Discrete Event
Simulation. New York: Wiley.

Deligonul, Z.S. 1987. Antithetic Bias Reduction for
Discrete-Event Simulations. Journal of Operational
Research Society 38: 431-437.

Gafarian, A.V., C.J. Ancker, Jr., and T. Morisaku.
1978. Evaluation of Commonly Used Rules for
Detecting 'Steady State' in Computer Simulation.
Naval Research Logistics Quarterly 25: 511-529.

Kelton, W.D. 1989. Random Initialization Methods in
Simulation. I/E Transactions 21: 355-367.

Kelton, W.D. and A.M. Law. 1983. A New Approach
for Dealing with the Startup Problem in Discrete
Event Simulation. Naval Research Logistics
Quarterly 30: 641-658.

Kelton, W.D. and A.M. Law. 1984. An Analytical
Evaluation of Alternative Strategies in Steady-State
Simulation. Operations Research 32: 169-184.

Kelton, W.D. and A.M. Law. 1985. The Transient
Behavior of the M/M/s Queue, with Implications for
Steady-State Simulation. Operations Research 33:
378-396.

Law, AM. and W.D. Kelton. 1991. Simulation
Modeling and Analysis. New York: McGraw-Hill.
Sargent, R.G., K. Kang, and D.M. Goldsman. 1988.
An Investigation of Finite Sample Behavior of
Confidence Interval Estimation Procedures. Working

Paper, Syracuse University, Syracuse, New York.

Schruben, L.W. 1982. Detecting Initialization Bias in
Simulation Output. Operations Research 30: 569-
590.

Schruben, L., H. Singh, and L. Tierney. 1983. Optimal
Tests for Initialization Bias in Simulation Output.
Operations Research 31: 1167-1178.

Schmeiser, B. 1990. Simulation Experiments. In
Handbooks in OR & MS, v.2: Stochastic Models,
eds. D. Heyman and M.J. Sobel, 295-330,



Replication Approach to Interval Estimation

Amsterdam: North Holland.

Turnquist, M.A. and J.M. Sussman. 1977. Toward
Guidelines for Designing Experiments in Queueing
Simulation. Simulation 28: 137-144,

Wilson, J.R. and A.A.B. Pritsker. 1978a. A Survey of
Research on the Simulation Startup Problem.
Simulation 31: 55-58.

Wilson, J.R. and A.A.B. Pritsker. 1978b. Evaluation
of Startup Policies in Simulation Experiments.
Simulation 31: 79-89.

AUTHOR BIOGRAPHIES

M. MURAT KOKSALAN is an associate professor in
the Industrial Engineering Department at the Middle East
Technical University. His research interests are
statistical analysis of simulation experiments and
multiple criteria decision making. He was a visiting
associate professor in the Krannert Graduate School of
Management, Purdue University during the 1990-91
academic year when part of this research was conducted.

NAIL BASOZ was a Master's student in the Industrial
Engineering Department at the Middle East Technical
University when this research was conducted. Currently
he has a managerial position in a private company in
Turkey.

1029



