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ABSTRACT

This paper considers an implementation of Frequency
Domain Methodology (FDM) where input factor lev-
els are held fixed in batches. In addition, the simu-
lation output series is batched and the corresponding
batch means are used as observations in the FDM
factor screening analysis. For a certain class of meta-
models, steady state results are provided. Results
are also provided for batch sizes chosen to reduce se-
rial correlation in output series but not necessarily to
achieve steady state.

1 INTRODUCTION

With respect to implementation, traditional factor
screening techniques and Frequency Domain Method-
ology (FDM) represent two extremes. For traditional
techniques such as a two level factorial design, input
factors are held fized during an entire simulation run
and changed across runs. The mean of the observa-
tions from one run is used as one observation in the
regression analysis. In FDM, factor levels are changed
during the stmulation run and each output observa-
tion generated within a run is used as an observation
in the regression analysis.

This paper considers a hybrid implementation
whereby input factors levels are fixed in batches
(or subruns) of consecutive observations and varied
across batches. In addition, the output is batched
and the mean values of the output batches are used
as observations in the FDM factor screening analysis.
[enceforth, we shall refer to this hybrid implementa-
tion as Fized Factor Batching (FFB).

Buss (1988) considered batching the output in an
FDM without fixing the input factors. He provides
favorable results for a single server queueing exam-
ple. Fixing input factors and batching the output (or
making separate simulation runs) was considered by
Sanchez (1987) and Sargent and Som (1988). In both
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papers, factor levels were held fixed in an attempt to
achieve steady state within each batch and approx-
imate independence between batches. Both authors
rejected FFB in favor of the traditional two level fac-
tor screening design because they found the latter to
be more efficient when the data are approximately in-
dependent and identically distributed (iid). Based on
their approach to FFB, we support their conclusions.
However, by only batching to achieve steady state
and independence between batches, they did not uti-
lize the power of harmonic analysis. In dynamic sys-
tems with memory and correlated error, transforming
to the frequency domain can ’decouple’ terms in the
memory filter and diagonalize the covariance matrix
of a correlated error process (see Morrice (1990) and
Brockwell and Davis (1987), page 130).

The purpose of this paper is to consider FFB with
batch sizes chosen to reduce serial correlation and not
necessarily to achieve steady state.

2 MODEL ASSUMPTIONS AND BACK-
GROUND

To illustrate FFB, it is helpful to study a single input
factor/single output metamodel of the form:

Y() =D h(rX(t—r)+e(t). (1)

r=0

Y (t) is the output, t = 1,..., N, is an index which
counts the observations generated within a run of the
simulation model, N is the total number of observa-
tions, ¢ < N is the lag length of the memory filter,
h(r) is the rth unknown coefficient in the memory fil-
ter, X(t) is the input factor, and (t) is a zero mean
covariance stationary error process with the following
properties:

L. g(t) = Y o w(s)e(t — s), where
Lt — o [w(s)] < 0o,
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2. v(li = jl) = Cov(e(i),e(j)) is real and
Y ohe—oo [T(R)] < 00,

3. {e(t)} are independent with E(e(t)) = 0,
Var(e(t)) = o2 and distribution function {Fy(e)}
where,

sup / e’dFy(e) = 0, asd — oo
t=1,2,... 'e')d

In FDM, the importance of X(t) is tested by mak-
ing two simulation runs. On the signal run, X(t) is
varied according to,

X(t) = X(0) + acos(wit) 2)

where X (0) is a fixed nominal (or mean) value, a
is the oscillation amplitude and w; = 2ap/N, for
pe{l,...,[N/2]} is the oscillation frequency. Sub-
stituting expression (2) into expression (1) yields,

q9
Y(t) = > h(r)X(0)+ A(wr) cos(wst) +
r=0

B(w1t) sin(w;t) + (¢) 3)

where, A(w;) = >.I_,ah(r)cos(wir) and B(w;) =
S I_, ah(r)sin(wyr). Since the term containing X (0)
in expression (3) is of no interest in a factor screening
experiment, it will be dropped from the model (only
the magnitude of the coefficient of terms that can be
altered are of interest in a factor screening experi-
ment). On the noise (or control) run, X (t) is fixed
at X(0).
For both runs, the periodogram statistic, i.e.,

N-1
I(wy) = (2/N)| D Y(O) exp(=int)*  (4)
t=0
is computed. (Note: 2 = —1.) The FDM fac-

tor screening test is called the Signal-to-Noise Ratio
(SNR). 1t is defined as,

I’(wl)
- (5)
I"(w1)

where the superscripts ”s” and “n” denote signal

and noise runs, respectively. For large sample sizes,
I*(w,) is approximately distributed as alX%;a,, where

N|G,|?
2 _ Aol
61 - 20’]_ ) (6)
> (k) exp(—iwik)
k1< L5
= (7)

Z v(k) exp(—iw1 k)+

|k|< &

7(&)exp(—iwi (§)),
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for N odd and even, respectively and

[}
G1=a)_ h(r)exp(—iwir) = A(w1) — iB(w1). (8)

r=0

I"(w1) is approximately distributed as aix? (see
Morrice (1990), Section 3.6.2 and Anderson (1971),
page 585). Therefore, from expression (5), the SNR
has an approximate F33 s, distribution. The noncen-
trality parameter in expression (6) indicates that the
FDM hypothesis for testing the importance of X (t)
is

HAZ G1:/20 (9)

The above analysis can be extended to a multi-
ple input factor/single output metamodel. For large
sample sizes, the SNR statistic is approximately inde-
pendent at distinct frequencies. Therefore, the power
of the test for each input factor can be calculated
independently of other input factors.

3 A DESCRIPTION OF FFB

The power of the SNR test is a function of
N,o; and G; through é; (see expressions (5) and
(6)). In general, batching the output affects the
power of the test by replacing N with the number
of batches and changing «; and Gi; fixing the in-
put factor settings in batches changes G;. To il-
lustrate, define the regular batch means as: Z(j) =
(Y (= 1)+ )+ Y ((G=1)b+2)+ -+ Y (jb)}/b, 5 =
1,...,m, where b is the batch size and m = (N/b) is
the number of batches. The corresponding batched
error process, ¥(j) = {e((j —1)b+ 1) +e((j — 1)b+
2)+---+€(jb)}/b, is a zero mean covariance station-
ary process (see Law and Kelton (1991), page 555).
{#(5)} also satisfies Properties 1, 2 and 3 given in
Section 2 for {e(t)}. Since,

(<) b
(@)= Y Y w(s—k+1)e((j—1)b+1-s)/b (10)

s=—00 k=1
and

Z |Zw(s—k+ 1)|/b

s=-00 k

=1
< D D lws—k+Dl6 ()

s=—o00 k=1

=b > |w(s)l/b < oo (12)

3=—00
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(Expression 11 follows from the triangle inequality;
Expression 12 follows from Property 1 for {e(t)}),
therefore Properties 1 and 3 hold for {¢(5)}. Prop-
erty 2 follows because the autocovariance function for

(@)} is,
(b-1)
(k) =(1/b) D> (1—|[s|/b)y(kb+s)  (13)

=-(6-1)

(see Law and Kelton (1991), page 557).
From expressions (7) and (13 ), «; is modified by
batch means to be,

Z 7o (k) exp(—iw, k)

IkI<Lg]
ol 14)
! > (k) exp(—iwy k)+ (
k<% )
(%) exp(—iw1(3)),
for m odd and even, respectively. In the limit,
lim lim bad = 27£(0), (15)

b—o00 m—o00

where f(0) is the spectral density (see Brockwell and
Davis (1987), page 118) of {(¢)} evaluated at 0 (see
Buss (1988), page 551 or Heidelberger and Welch
(1981), page 238).

The input factor settings are fixed in batches cor-
responding to the output batches, and varied across
batches according to,

X(t) = X(0) + acos(wy [(t +b—1)/b]). (16)

For instance, from expression (16), each factor level
setting in the set {X((j—1)b+s),s = 1,---,b} isequal
to X (0) + acos(w1j), for j = 1,---, m. Substituting
expression (16) into (1) and computing batch means
yields,

b-1 ¢
2G) = Y (1/5)h(r){X(0)+

s=0r=0

acos(wi(j — [(r + 5)/b]))} + ¥(4)(17)

Omitting the terms containing X (0) in expression
(17) (see argument following expression (3)) and
using the trigonometric identity cos(w(t — r)) =
cos(wt)cos(wr) + sin(wt)sin(wr), expression (17) can
be rewritten as,

Z(]) = Al,(wl)cos(wlj) + BbSin(wlj) + 1/’(])1 (18)

where

q

b-1
Ay(wr) =3 (a/b)h(r)cos(wi|(r + 5)/b]) (19)

3s=0r=0
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and
b-1 ¢
By(w1) =Y Y (a/b)h(r)sin(wi|(r +5)/b]) (20)
8=0r=0

Since the batch error process satisfies Properties 1,
2 and 3 given in Section 2, then for large m,

I} (w1)

SN Ry(wy) = (@) (21)

where
m-—1
Lwn) = (2/m)| 3 Z()exp(—iwif)*  (22)

has an approximate F; 3 s). The new noncentrality
12;6%
parameter is,

by 2 m|G’{|2
=—> 2
(61) 202 ) ( 3)
with,
G? = Ap(w1) — iBy(w). (24)

G? replaces G; in the FDM hypothesis given in
expression (9). From expressions (19), (20), and (24),

q9
Jim Gy=a)_ h(r). (25)
r=0

By fixing factor settings and batching the output, asb
approaches infinity, the FDM hypothesis approaches
a value which is not a function of a non-zero fre-
quency. For the metamodel in expression (1), the
right hand side of expression (25) (without the scal-
ing factor “a”) is the coefficient in the metamodel
relating the limiting averages,

N
Nim ¥ = Jim ,Z; Y (t)/N (26)
and
_ N
Jim X = lim ; X(t)/N. (27)

Traditional factor screening experiments test whether
or not this coefficient differs significantly from zero
(see Morrice (1990), page 94). Therefore, as b ap-
proaches infinity in FFB, the FDM hypothesis ap-
proaches the traditional factor screening hypothesis.

4 AN EXAMPLE

Suppose Y(t) and X(t) are related by the following
metamodel:

Y(t) = X(t) + 0X(t — 1) + e(t) (28)
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where,

e(t) — ¢e(t — 1) = e(t), (29)
0 and ¢ are constants, and {e(t)} are iid Normal(0,1).

In this example, power of the test versus
frequency curves were constructed for (6,¢) =
(0.5,0.1),(0.1,0.5), and (0.9,0.5); these will be re-
ferred to as Cases 1, 2, and 3, respectively. In all
cases the oscillation amplitude (see Expressions (2)
and (16)) was set equal to one, N = 256, and batch
sizes, b = 1,2, and 4 were considered. An appro-
priate value for N was chosen using a bound from
Morrice (1990) which measures how close the error
covariance matrix is to being diagonalized when the
analysis is performed in the frequency domain. Ac-
cording to this result, the approximate distributional
assumptions for the SN Ry test (see Expression (21))
are valid for m = 256,128 and 64. The power of the
test curves were generated using the central F approx-
imation of the non-central F found in Scheffe (1959)
on page 144. The FORTRAN IMSL routine FDF
(see IMSL/STAT LIBRARY, page 925) produced the
values for the cumulative distribution function of an
F-distribution.

Figures 1, 2, and 3 contain the power of the test
curves for Cases 1, 2, and 3, respectively. In each of
the diagrams the label ”bsiz” is the batch size, b. As
expected, in all three cases, batching tends to flatten
out the power of the test curves. This follows because
both numerator and denominator of the noncentral-
ity parameter are approaching constant values as the
batch size increases (see expressions (15) and (25)).
The shapes of the power of the test curves are de-
termined by the interaction of o} and |G?|? in the
noncentrality parameter 2.

For Case 1 (see Figure 1), since ¢ is small, {¢(t)} is
close to an iid Normal(0,1) process. Batching to pro-
duce {¥(j)} further reduces the correlation. Since
an uncorrelated process has a flat spectral density
(see Brockwell and Davis (1987), page 121), o} is
close to being constant across all frequencies for all
three batch sizes. The shape of the power of the test
curves in Figure 1 are, for the most part, determined
by the shape of |G2|?. For b = 1,|G}|? is a scaled
MA(1) spectral density which has a maximum value
for frequency zero and decreases as the frequency in-
creases over the interval (0,0.5] (see Brockwell and
Davis (1987), page 122). As b increases, |Gt|? ap-
proaches this maximum value across all frequencies
(see expression (25)). Therefore, as b increases, the
power of the test improves across all frequencies.

Case 2 is the opposite of Case 1 (see Figure 2).
Since 6 is small, |G?|? is close to being constant across
all frequencies for b = 1,2, and 4. For b = 1,a} is
approximately equal to a scaled spectral density for
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Figure 1: Test Power Versus Frequency For Case 1

an AR(1) process. This function has a maximum at
zero and decreases over the frequency range (0,0.5].
When b increases (and the corresponding value of m
is large enough), a® approaches this maximum value
across all frequencies (see expression (15)). Since o}
appears in the denominator of 62, the power of the
test curve decreases as a! increases. In this case,
increasing b decreases the power of the test across all
frequencies.

Case 3 illustrates that increasing the value of b may
not uniformly increase or decrease the power of the
SNRy test. (compare power of the test curves for
batch sizes one and two in Figure 3). It also illustrates
that choosing an intermediate value for b may be more
desirable than batching to achieve steady state (Case
1) or not batching at all (Case 2). In Figure 3, unlike
the power of the test curve for b = 1, the power of the
test curve for b = 2 does not have a region where the
power of the test is close to zero (compare these power
curves for frequencies higher than 0.4). In addition,
the power of the test curve for b = 2 almost uniformly
dominates the curve for b = 4.

5 CONCLUSION

In this paper, we have examined some of the proper-
ties of FFB and FDM analysis. For classes of meta-
models discussed in Section 2, steady state results are
provided. In Section 4, an example illustrates cases
where FFB improves the power of the FDM hypoth-
esis test and cases where it does not. For cases where
FFB is beneficial with respect to the power of the
test, we have illustrated that batching to an inter-
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Figure 2: Test Power Versus Frequency For Case 2

mediate batch size may be better than batching to
achieve steady state.

Future research includes considering ways to use
the structure of a simulation model to determine if
FFB improves FDM. For example, information such
as whether or not an input factor signal must pass
through a waiting line may provide insights into the
usefulness of FFB. Another research topic concerns
the effect of batch means on minimum required run
length for FDM. A measure for minimum required
run length, given by Morrice (1990), depends on the
autocovariance function of the error process which is
changed by batching. Finally, based on the results of
Buss (1988), in future research we will also consider
the effects of chosing a batch size for the input factor
settings which is different from the output batch size.
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