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ABSTRACT

This paper derives an improved bound on the
time required to estimate the volume of a convex
body in m—dimensional euclidean space with a

specified relative accuracy.

1 INTRODUCTION
Dyer et al. (1989) and Lovasz and Simonovits
(1989) derive expressions for bounding the sample
size required to estimate the volume of a convex
body in m-dimensional euclidean space with a
specified relative accuracy. The purpose of this
paper is to present an alternative bound. Let R
denote a region with unknown volume A(R) in the
m-dimensional unit hypercube. If one generates a
random point X uniformly in [O,l]m and sets
(X)=1 if XER

=0 otherwise
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then E¢(X) = A and var ¢(X) = A(1 - X) with
corresponding coefficient of variation 7(¢(X)) =
is the

[ - /Y2,

If, for example, R

m—dimensional hypersphere centered at

(1/2,...,1/2), then  (4(X)) = O([(2m +
4)/7re]m/4) as m—-m, demonstrating a serious
limitation for standard Monte Carlo sampling. An
alternative approach, suggested in Dyer et al.
(1989), eliminates the potential for exponential
growth.

Define R as a bounded open convex region in
R™ and assume that we are given a hypersphere of
radius w containing R, a hypersphere of radius
s (>0) contained in R and a procedure which can
determine whether or not any point x isin R or
not. These properties enable one to find a

nonsingular, affine transformation which, when

applied to R

=)

results in the transformed body

containing the hypersphere A(1) of unit radius
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centered at 0 and being contained in a concentric

hypersphere A(r) of radius r = ml/ 2(m+l)

(Grotschel, et al. 1988). Moreover, finding this
transformation takes time polynomial in m . The
transformed body is said to be well rounded. For
present purposes, assume that R 1is the trans-

formed body so that A(1) C R C A(7).

Let
p=1-1/m

t =t(m)= [logl/p 7|

p; = max(pzr,l) 0<i<t.
Let R(r) denote R scaled up by . Since

A(1)CR, A(r) CR(r). Let

and observe that K_(pi) J K_(ppi) so that /\('K-i) 2
pmz\(Ki_l). This inequality is essential to part iii
of our theorem.

Algorithm CONVOL estimates the volume

ratios B = A(L{_i)/A(Kz._l), 1<:<t, and

1013

combines them to produce an estimate of A(R).
Figure 1 illustrates the steps for :=1. The
algorithm follows similarly to a procedure in Dyer
et al. (1989) that specifies a particular method for
generating X. The rationale for the estimating

approach follows from:

Algorithm CONVOL

Purpose:  To estimate A(R).
Input: K‘l""'Kt , n= (nl,...,nt).
Output: In(g).
Method:

1+ 1.

While 1< ¢:

Ti1—0 and j& 1.
While ;< n:

Generate X uniformly distributed in

If XeK.,, T.«T.+1.
1 1 ]
jeg+ 1.
i1+ 1.
t

T (R) - MA() T (T/n).

n i=1
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Figure 1: Estimating the Volume of a Convex Body
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Theorem. The quantity XD(B) has guarantees the (/\(B)er,J) relative accuracy

criterion

i. EXn(g) = A(R)
prl| X (R) - MR)| < MR)e ]21-5

_ 2 t 1-p.
ii. var X (R)=2°(R)| I 1+”—n‘ -1
i—1 N,
! P and the bound in (2) sharp.

where

Proof. Since KiC K 1<:<t,

-1’
b= ME)/NME, ) 1€t

Pr(XEK | X€K, )= MK )/MK, )<1

and
Therefore,
ii. for n=.=n,=n : :
EX (T/n)= T B(T/n)
=1 =1
_ gt 172
TG R) <[+ ) -
= MK )/A(K,).
iv. If 1im }L:o, the bound in i
mA® Since M(K) = A(A()) and K, = R, part i follows.
converges.
2 af 1A
Since E(T/n)" = u’ |1+ —, part ii follows by
7 ook
v. A sample size
independence.
3 The squared coefficient of variation has the
n(A(R)e ,6) = | ——F—7—
T (1+6€3)1/t -1 form
1/2 _ t 1-p.
¢ |mtalm ()41 (2) P®)= T 1+ —f -
In(1+8¢” ) =1



Since p, > P> 1/4,1< i<,

PE®)¢ 1+ 2] -

which establishes iii. Part iv is obvious.

Part v follows directly from Chebyshev’s
inequality using the worst—case variance
/\2(3)[(1 + 3/n)t - 1] and applying the inequality

-In(l - z) >z, z< 1. Theselead to

In ml/2 m+1)

t= - 1ln p

+0< mln[m1/2(m+l)] +6
0<f<1.

It should also be noted that for any upper
1-p*

bound g, <1 on Bpreeobh o (1+ )t converges

p*n

onlyif 1im ;tL- = 0, implying that the O(m In m)
m-m

bound on sample size is sharp. n

The successful implementation of Algorithm

CONVOL rests on the existence of algorithms
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whose times are bounded by polynomial functions

in m for:

a. determining a hypersphere contained in R
b. determining a concentric hypersphere that
contains R

c. determining whether or not a point x is

in R

d. generating a random X  uniformly
distributed on each region
KK K,

Such algorithms exist for all four tasks. In
particular, Dyer et al. give a polynomial-time
algorithm for generating an X that is
approximating uniformly distributed on _Igi .

Items a and b need be executed only once at
the beginning of the sampling experiment whereas
times ¢ and d need tobe executed on each
replication. As formulated in the Theorem, the
specified relatively  accuracy  obtains  with
tn(A(B)er,J) = O(mz(ln m)2) determinations of set
membership (item c) and sample generations (item
d). As originally formulated in Dyer et al., this
bound was O(m4(ln m)5) and, as formulated in

Lovasz and Simonovits it was O(ma(ln m)4).

These alternative approaches relied on Hoeffding’s
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inequality and Chernoff’s bound. For example, see

Hoeffding (1963).

REFERENCES

Dyer, M., A. Frieze and R. Kannas (1989).
A random polynomial time algorithm for
approximating the volume of convex bodies,
Proc. Twenty-first ACM Symposium on
Theory of Computing.

Lov;sz, L. and M. Simonovits (1989). The
mixing rate of Markov chains, an isoperimetric
inequality and computing the volume,
Department of Computer Science, Princeton
University.

Groetschel, M., L. Lovasz and A. Schrijver
(1988). Geometric  Algorithms  and
Combinatorial Optimization, Spring Verlag.

Hoeffding, @ W.  (1963).  Probability in

equalities for sums of bounded random

variables, J. Amer. Statist. Assoc., 58, 13-29.

ACKNOWLEDGEMENT

This research was partially supported by the
National Science Foundation under Grant No.
DDM-8913344. The Government has certain
rights in this material. Any opinions, findings, and

conclusions or recommendations expressed in this

1017

material are those of the author and do not
necessarily reflect the views of the National Science

Foundation.

AUTHOR'S BIOGRAPHY
GEORGE FISHMAN is professor of
Operations Research at the University of North
Carolina at Chapel Hill. His principal interest is
the development of statistical methodology
applicable to the analysis of output from discrete
event digital simulation models. He is the author
of Concepts and Methods in Discrete Event Digital
Simulation published by Wiley in 1973 and of
Principles of Discrete Event Simulation published
by Wiley in 1978. He is a frequent contributor to
the operations research and statistical literature on
this topic. At present, he is working on variance
reducing methods for applying the Monte Carlo
method to counting problems and on designing

Markov

transition matrices to accelerate
convergence in Metropolis and Gibbs sampling.
Professor Fishman has been  simulation
departmental editor for Management Science and
is a member of the Operations Research Society of
America, the Institute of Management Science and

the American Statistical Association.



