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ABSTRACT

We investigate the effect of input-distribution speci-
fication on the validity of output from simple queue-
ing models. In particular, the use of various kinds
of empirical distributions for approximating service-
time distributions is studied.

1 INTRODUCTION

Among the various sources of error that make the
output from a simulation less valid is modeling the
“wrong” distribution for various input quantities like
arrival times of jobs to a job shop, service or repair
times of machines, etc. A commonly encountered
problem in simulation modeling is the specification
of a suitable input distribution for the observed data.
These data are specific realizations of some underly-
ing distribution that can be regarded as the “true”
distribution. A prevalent practice is to approximate
this true distribution by a fitted distribution from
a standard family (e.g., exponential, uniform, etc.).
In many situations, this approximation may not ade-
quately represent the observed data, and may intro-
duce significant error in the input that may adversely
affect the validity of the output.

For example, consider a “real” single-server system
with lognormal (4 = —0.35, 02 = 0.69) interarrival
times (which has mean 1 and variance 1) and expo-
nential service times (with mean 0.9). The system
performance was simulated for 250 delays in queue
with empty-and-idle starting conditions. The true
expected average delay in queue based on 100 repli-
cations for this simulation is 6.1 time units. If, in-
stead of lognormal, one erroneously used exponential
interarrival times (with the same mean and variance
as the lognormal distribution), and the service-time
distribution as before, the expected average delay in
queue for this system is 5.3 time units. Even though
the first two moments of the true service-time distri-
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bution were matched by the chosen approximation,
an error of 13% was introduced due to wrong distri-
bution selection.

In simulation modeling, the true input distribution
is approximated using either a standard distribution
or some nonstandard (e.g., empirical) distribution.
Any estimator of the true distribution should be able
to generate variates beyond the range of the observed
data, i.e., beyond the smallest and the largest of the
observations. This makes the estimator generalizable
because the range of the estimation is not dependent
on that particular realization of the observed data
vector. It also should have the capability of model-
ing a variety of distributional shapes, i.e., it should
be flezible. Flexibility is of great importance since it
improves the quality of the fit by approximating the
true distribution as closely as possible.

In general, there are three methods of specifying
an input distribution:

1. Use a “standard” parametric distribution: These
include distributions such as uniform, exponen-
tial, Weibull, etc., that have a known (closed-
form or otherwise) cumulative distribution func-
tion (CDF). Such standard distributions are gen-
eralizable but not necessarily flexible.

2. Use an empirical distribution: Here the observed
data themselves are used in some way to form a
distribution function. Actual values of the indi-
vidual observations or grouped data can be used
to come up with a distribution function. There
are several ways of constructing such distribution
functions. For example, define

F(z) = - if Xg-1) < 2 < Xy

where X(1),...,X(n) are the order statistics of
the observed data (Bratley, Fox, and Schrage
1987, p. 150). Most empirical distribution func-
tions apply only to the observed data, i.e., the
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variates generated in this way cannot take on
values beyond the smallest and the largest of the
observations (Law and Kelton 1991, pp. 350-
353). In this case, the distribution is, by design,
flexible but not generalizable.

3. Use a flexible parametric family: Such a para-
metric family supplies a flexible distribution
function that is an approximation of the true
distribution function (Johnson 1949). The dis-
tribution function does allow variate generation
beyond the observed data (as in 1). This alter-
native can be viewed as a compromise between
the first two as it is perhaps both generalizable
and flexible.

Another important aspect of distribution selection
is the ease with which one can generate variates from
the specified cumulative distribution function (CDF).
There are many exact algorithms for variate gener-
ation. Some of these fall into the classes generally
known as inverse-transform, composition, convolu-
tion and acceptance-rejection (Law and Kelton 1991,
pp- 465-484). Among all these methods, the method
of inverse transform proves to be of great advantage
because it can be used to facilitate and strengthen
many variance-reduction techniques (Bratley, Fox,
and Schrage 1987, pp. 44-59).

The most widely used mode of input-distribution
specification, fitting from the standard families of dis-
tributions, has convenient forms for variate genera-
tion. Some of these have a closed-form CDF that
can be easily inverted for variate generation (like ex-
ponential and Weibull), while some that do not en-
joy such a privilege need methods like acceptance-
rejection for their variate generation. But in either
case, it is easy to generate the desired variates. Al-
though variate generation may not pose a problem,
these standard families may not fit the observed data
well, thereby creating an error in the specification of
the input distribution that may propagate through
the system into the output.Hence the concerns in se-
lection of input distributions are the ease of variate
generation and the quality of the fit of the chosen
distribution to the observed data.

The goal of this research is to analyze some empiri-
cal “black-box” methods existing in the literature for
modeling input distributions, as an alternative to fit-
ting standard distributions. The motivation for con-
sidering these automatic techniques is as follows:

1. These methods are designed to eliminate any
judgement on the part of the analyst (which may
be required in fitting standard distributions) that
may lead to an erroneous decision.
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2. The CDFs given by these methods have a simple
inverse, and hence variate generation can be done
using the inverse-transform method.

3. The distributional forms of these methods are
flexible, thereby improving the possibility of a
good fit.

2 EMPIRICAL DISTRIBUTIONS

The problem of input-distribution selection is inher-
ent to simulation modeling, and has been discussed in
the simulation literature for some time. In this sec-
tion, we review and qualitatively contrast empirical
distributions with standard distributions.

In describing these empirical distributions, we as-
sume that X, «; is a random vector observed by the
simulation analyst. We also assume that the support
of these distributions is [0, 00).

The simulation literature discusses some empiri-
cal distributions for the purpose of using them as in-
put distributions for simulation models. Among these
empirical distributions is the “unadorned,” which fits
a piecewise-linear CDF to the entire n-vector. Defin-
ing Xy = 0, the CDF is

0 ifz<0
i z—-X; .
F(z) = Z+Rmﬂ')m 11.' Xuy <z < Xt
i=0,...,n-1
1 if 2> X(n)

This distribution truncates the right tail of the true
distribution. A remedy suggested by Bratley, Fox and
Schrage (1987, pp. 150-151) fits a piecewise-linear
CDF to the smallest n — k data points and an expo-
nential tail to the remaining k points. This distribu-
tion is referred to as the mized empirical-ezponential
distribution. Once again defining Xy = 0, the CDF
for this distribution is given by

0 ifz<0
i z—X; .
rt X xy X6 S @< Xy
1=0,....,.n—-k-1
(==X (pn_x))
1- %e[_‘u)_] ifz > X("_k)

F(z)=

where k is the number of observations used to fit the
tail (1 <k <n-1),and

_ Xo-0)/2+ Eizn k1 (X) = Xn-t))

6 k

Since the empirical distributions are formed using
the data vector they are completely flexible, i.e., they
change their form according to the data. But they
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are not always generalizable since their variate gen-
eration cannot produce variates outside the range of
the observed data. An exception to this rule is the
mixed empirical-exponential distribution, which can
generate variates beyond X(,,) due to its exponential
tail. As discussed in the introduction, many standard
distributions do not have this problem of generaliz-
ability but are seldom flexible.

The existing literature on distribution specification
discusses empirical and flexible parametric distribu-
tions but does not address the implication of using
ill-fitting distributions in simulation modeling, which
is what a simulation analyst would be interested in.
Moreover, the fits of these estimated distributions
are not compared to the existing practices of fitting
“standard” distributions or to the available alterna-
tives, so that practitioners get an idea of the gains (in
terms of precision and accuracy) in employing such
alternatives. Thus, the approximation methods sug-
gested have to be studied in greater detail, and in the
context of some practical simulation applications.

3 ANALYSIS AND RESULTS

As mentioned earlier, input-distribution selection
plays an important role because the validity of the
output is of paramount importance. Hence, the ap-
proximation, however “close” to the true distribution,
has to be conducive to valid and feasible output.

3.1 Propagation of Input Error

In this section, we analyze and compare the quality
of the approximation of the true distribution, i.e., we
study the impact of error on the output introduced
by an unsuitable approximation of the input. We
perform this analysis using empirical and standard
distribution-specification methods. We also look at
ease of implementation of these methods for simula-
tion models.

These analyses need to be performed in the con-
text of an application. For initial experimentation,
we have chosen the M/G/1 queueing system. In this
queueing system, the arrivals to the queue follow a
Poisson process with rate A, and the service times are
from a general (unspecified continuous) distribution.
In this study, the general service-time distribution has
been given four known forms:

1. Exponential(y): p = 1.0.

2. 2-Erlang(p): p =0.5.

3. Gamma(a,3): a = 3.5,4 = 0.286.
4. Weibull(a,3): a =2.0,0 = 1.128.
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The Poisson arrival process has rate A = 0.8.

The effect of the chosen approximation on the out-
put can be studied for a variety of models. The rea-
son for selecting the M/G/1 system was due to the
existence of simple analytical expressions for some de-
sired output measures like steady-state waiting time
in queue, given by

AE[X?]
Wo = ci—=fr
2(1 — AE[X]))
where E[X] and E[X?] are the first and second
raw moments of the general service-time distribution.
This expression for the waiting time is known as the
Pollaczek-Khintchine (P-K) formula (Ross 1989, p.
376).

To assess the goodness of the specification method,
the general service-time distribution is given a known
form, for which the required moments are known and
thus Wg is easily computed from the P-K formula.
Now, one could get estimates of this output measure
using the first two moments of the approximating dis-
tribution. Thus, the effect of the specified distribu-
tion on the output can be checked.

The comparison of the approximating methods was
done as follows:

1. Compute the first and second moments of the
known distributions, which will provide an exact
expression for Wg.

2. Generate a sample of size n (we took n = 10, 30,
50, and 100 in this study) from one of the known
distributions. Pretend that the sample generated
is the observed sample, i.e., its true distributional
form is unknown. Then use the approximating
methods on the sample (one at a time) to esti-
mate the observed CDF. One could then com-
pute the first and second moments of these al-
ternative methods of specifying the service-time
distribution either numerically or analytically.

In the case of empirical distributions, the first two
raw moments are defined as a function of the observed
data. Since an empirical distribution is formed using
the observed data alone, the CDF and the moments
will obviously be functions of the data vector, i.e.,
they will be conditional on the data.

For the unadorned empirical distribution, the con-
ditional raw moments are given by

E[X | Xay, - Xyl = X = 222
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1 n-1
E[XZ | X(l))- .. ,X(n)] = 3—n[2ZX(2‘)

i=1
n-1
+D XX + X
i=1

and the moments of the mixed empirical-exponential
conditioned on the observed data are (Bratley, Fox
and Schrage 1987, pp. 150-151),

EX | Xay, -, Xl = X

which is an unbiased estimator of the first moment,
given the data, and

1 n—k-1
E[X’IX(I),...,X(n)]:3—n[2 > X%
i=1

n-k-1
2 k 2, 92
+ ; X Xi+1)+ Xinopy]+ (0 + X(a-p))”" +6]

For most standard distributions, the first two mo-
ments can be easily computed assuming that the dis-
tribution was specified via maximum-likelihood esti-
mators (MLEs).

In our study, from each sample, we obtained
moment estimates for each distribution-specification
method. Using these estimated moments, an esti-
mate of the required output measure, namely the P-K
formula, was computed. The performance measures
were the variance of the estimate and the bias in the
estimate. These two measures can be combined into
one single measure, the mean square error (MSE).
However, we did not use this composite measure alone
since one needs to understand the precision and the
accuracy of these estimated separately because, in the
context of this problem, accuracy may be more im-
portant than precision.

We replicated the Wg-estimation procedure 100
times. Some approximating distributions generated
negative Wg in some replications. Those replications
were discarded since the estimates were inadmissi-
ble. So for a fair comparison, the experiment was
continued until we obtained 100 replicates where all
the methods generated feasible Wg’s. This gave us
yet another measure of performance, i.e., the total
number of replications required by each specified dis-
tribution to obtain 100 “good” ones. This measure
demonstrates the ability of a method to produce fea-
sible waiting times in queue.

The results are presented in Figures 1-8. In this
study, we have considered six standard distributions
and six empirical distributions. The mixed empirical-
exponential distribution has five different forms based
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on k, the number of points in the tail. In our study,
k was taken as 10%, 20%, ..., 50% of the data points.

Each graph presents information on both the vari-
ance and the bias. The horizontal axis has all the es-
timated distributions, and the vertical axis represents
both the standard deviation and the bias of the es-
timates. The graphs also have the root mean square
error showing the combined effect of the two crite-
ria. Although we ran the experiments for four differ-
ent “observed” sample sizes, we have only included
graphs for sample sizes 30 and 100 since they were
representative of the other cases.

Among the specified distributions, the unadorned
distribution performs well in almost all cases when
MSE is the criterion. The reason for its superiority
is the low variance in estimating Wg. In terms of
the bias, even though the unadorned distribution is
not always better than the rest, the bias is not large
in any case. The mixed empirical-exponential distri-
bution is also consistent in its behavior. It appears
to be less biased than the unadorned but is less pre-
cise. Its performance does not seem to be affected
by the number of points in the tail, except when ex-
ponential is the true distribution. In that case, it
seems to improve with more points in the tail, which
is to be expected. In comparing the performance of
the empirical distributions to that of their standard
counterpart, the most striking observation is that the
empirical distributions are consistent. They may not
be the most accurate and precise in their estima-
tion in all cases but their performance is consistently
good. Some standard distributions like gamma and
Weibull show some promise in their estimation ability
but others like lognormal, triangular and uniform do
not appear to be reliable alternatives. For example,
when gamma was the true distribution, the variance
and the bias in Wg under the triangular distribution
became worse with increasing sample size, which is
counter-intuitive. This suggests a serious problem of
inconsistent behavior.

3.2 Ease of Implementation

The empirical distributions considered in this study
are easy to understand and implement. Variate gen-
eration is done using the inverse-transform method,
which involves only a few steps. The CDFs of these
distributions are simple to invert. The CDF inverse of
the unadorned empirical distribution can be obtained
in a single line of code, since the piecewise linear func-
tion is fitted to the entire observed vector. Obtaining
a realization of this empirical CDF is simple:

Generate U ~ U[0, 1]
Set i = |nU|
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Return X = n(U — £)(X¢i41) — X&) + X(5)

The mixed empirical-exponential distribution, on the
other hand, has a split inverse CDF function, one for
the piecewise-linear portion fitted to the first n — k
data points, and the other for the shifted exponential
fitted to the k largest observations. Bratley, Fox and
Schrage (1987, p. 151) supply a two-step algorithm
for variate generation:

Generate U ~ U[0,1]
IfU>1- % then
Return X = X(n_p) — €ln(1(l;—vl)
else
Set i = |nU|
Return X = n(U — i)(X(,-_H) — X(,-)) + X

In terms of computation, one needs to sort the data
vector in both the cases, and take a logarithm in the
case of the mixed empirical-exponential distribution.

As discussed in the introduction, variate genera-
tion for most standard distributions does not pose a
problem. Although that is the case, it may not be
as simple as in the case of empirical distributions.
Some standard distributions do not have invertible
CDFs. In such cases, there may be other efficient
variate-generation techniques but they may be more
involved than the simple inverse-transform method.

4 CONCLUSIONS

When the approximating distributions were com-
pared on the basis of variance and bias in their es-
timates, the empirical distributions generally did as
well as the best fitted standard distributions, and
sometimes even better. For example, when Weibull
was the true distribution, the fitted Weibull and
gamma were the best fitting distributions among the
standard distributions, with the least bias and vari-
ance. The empirical distributions were a good match
where both the criteria were concerned, and in some
cases, actually had lower variance and bias.

A point in favor of the empirical distributions is
that their performance is consistent. This cannot be
said about the standard distributions whose perfor-
mance quality depends more critically upon the un-
derlying true distribution. This robustness of an ap-
proximating method is an important issue in input-
distribution specification.

Where the ability to produce feasible Wg was con-
cerned, most standard distributions had a high accep-
tance rate, i.e., very few replications were discarded
due to infeasibility, except triangular and uniform
which had a miserably low acceptance rate for some
true distributions. The empirical distributions once
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again demonstrated a more consistent behavior. The
graphs above include only those distributions that
had a reasonable acceptance rate.

Another distinguishing factor between the empiri-
cal distributions and the standard distributions was
the ease of implementation. Getting the moments of
the empirical distributions was easy once a sample
was generated, while for the standard distributions,
computation of parameter estimates was not always
easy. For example, in the case of the gamma distri-
bution, the MLE involved using a Newton-Raphson
root-finding algorithm. This led to some numerical
problems, even when gamma was the true distribu-
tion.

5 FUTURE WORK

In order to give a complete treatment to the problem
at hand, the following tasks need to be accomplished:

1. The true distributions considered are unimodal
and continuous. The alternative specification
methods need to be studied under some (not so
neat) distributional forms, e.g., ones with mul-
tiple modes or some discontinuities. The queue-
ing system studied is a single-server system with
Poisson arrivals. The appeal in selecting this
system was the simple analytical expression for
a desired output measure, namely the waiting
time in queue. The M/G/k system also has an
approximate expression for the waiting time in
queue in terms of the first and second moments
of the service-time distribution (Nozaki and Ross
1978). So the error in this output measure can
be examined using the estimates of the moments
obtained in this study.

2. The performance of these methods has to be
investigated with more complicated systems for
which no expressions for the output measure ex-
ist. For such models, one could simulate the
system under study by giving the unknown dis-
tributions known forms as in the present pilot
study, and get estimates of desired output mea-
sures. Then, pretend that the data generated ar-
tificially are indeed the observed data, and run
the simulation using the approximating methods
to get another set of estimates of the same out-
put measure. The two sets of estimates can then
be compared. The simulation study will have to
be carefully designed to get accurate and pre-
cise estimates so that the comparisons have high
power.
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3. This study considered two extremes of the con-
tinuum, namely the empirical distributions and
the standard distributions. A compromise be-
tween the two, the flexible parametric families,
needs to be included as well.
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