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ABSTRACT

Classical stochastic approximation algorithms often
diverge because of boundedness problems. The stan-
dard approach to preventing this is to project the
sequence generated by the algorithm onto a predeter-
mined compact set K. However, in the typical ap-
plication, the approximate location of the solution is
not known. To minimize the probability that the so-
lution lies outside the set K, it is therefore necessary
to let K be large. This can seriously curtail the effi-
ciency of the algorithm. We propose a new stochastic
approximation algorithm which bounds the sequence
of estimates of the solution to an increasing sequence
of sets. This eliminates the possibility of bounding
the algorithm to a set which doesn’t contain the so-
lution. Furthermore, it is possible to let the initial
set be small, which can result in improved empirical
performance.

1 INTRODUCTION

Stochastic approximation algorithms are concerned
with the problem of finding the root of a function h
whose values are not known analytically and there-
fore have to be estimated or measured. Their goal is
to obtain a sequence of iterates {6,} that converges
almost surely to the solution. The function h is typ-
ically evaluated using simulation. It is not assumed
to have any particular structure and the distribution
of the estimates of the function values is unknown.
Stochastic approximation algorithms can be used
to optimize the performance of a complex stochastic
system with respect to continuous decision parame-
ters. If f : R4 — R is the performance measure of
interest, then h = V£ if we are interested in deter-
mining the minimum of f, and h = —V f if we want to
find the maximum of f. Estimates of the gradient V f
can be obtained by using finite differences, or if the
system is being analyzed through simulation, gradient
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estimates can be obtained by using either the likeli-
hood ratio method (see for instance Glynn (1989) and
Andradéttir (1990a, 1991b)), or perturbation anal-
ysis (see for instance Suri (1989) and Glasserman
(1991)). The likelihood ratio method and pertur-
bation analysis have several advantages over finite
differences. In particular, gradient estimates can be
obtained by observing a single sample path of the
system under study, and when the gradient estimates
produced by these methods are unbiased, the stochas-
tic approximation algorithm will have a faster asymp-
totic convergence rate.

This paper is organized as follows: classical
stochastic approximation algorithms are discussed in
Section 2. The projected algorithm is introduced in
Section 3 and Section 4 contains a comparison of the
empirical performance of these algorithms. Finally,
Section 5 contains some concluding remarks.

2 CLASSICAL STOCHASTIC APPROXI-
MATION ALGORITHMS

Classical stochastic approximation algorithms obtain
a sequence {f,} of estimates of the solution as de-
scribed below:

Algorithm 1

Step 0: Choose 0, € R9.

Step 1: Given 6,,, generate an estimate Y, of h(0,).
Step 2: Compute

(1)

0"+1 = 9,, - a,,Y,,.

Step 3: Letn=n+1 and go to step 1.

Here {a,} is a predetermined sequence of positive
constants. We assume that a, — 0 and Y or, a, =
00. These assumptions are needed to guaranty the
convergence of Algorithm 1. If }°°° a, < oo and
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the sequence Y, is bounded, then the iterates {f,}
will all lie in a compact sphere with center 6;. This
means that the algorithm can converge only if 4, is
close enough to the solution of the problem. The
assumption that a, — 0 is needed to dampen out
the effect of the errors in the function evaluations to
obtain almost sure convergence to the solution of the
problem as the number of iterations goes to infinity.
Typically, a,, is chosen as a/n, where a is a positive
constant.

The Robbins-Monro algorithm (Robbins and
Monro 1951) and the Kiefer-Wolfowitz algorithm
(Kiefer and Wolfowitz 1952) are the two most com-
monly used stochastic approximation algorithms.
They are both special cases of Algorithm 1. The
Robbins-Monro algorithm is more general than
the Kiefer-Wolfowitz algorithm in that the Kiefer-
Wolfowitz algorithm can only be applied to solve
optimization problems (it is designed to determine
the root of the gradient of the objective function),
whereas the Robbins-Monro algorithm can be used to
solve more general root-finding problems. When ap-
plied to stochastic optimization, the two algorithms
differ in how they estimate the gradient of the ob-
jective function. The Robbins-Monro algorithm es-
timates the gradient directly, whereas the Kiefer-
Wolfowitz algorithm uses finite differences to esti-
mate the gradient. These algorithms are far from
ideal. It is well known that they converge extremely
slowly when the objective function is very flat and it
is possible show that they do not necessarily converge
when the objective function is steep. Indeed, if d = 1,
|61] > \/3/a, and for all n, a, = a/n and Y,, = 63,
where a > 0, then one can show that the sequence
generated by Algorithm 1 satisfies |6, > |61 |n! for all
n (Andradéttir 1990a, 1990b). This shows that Algo-
rithm 1 does not necessarily converge when applied
to finding the root of the function h(f) = 63. The
problem is that the function h is quite steep, so the
length of the step taken in an iteration (@, |h(6n)|) can
be very large. The algorithm generates a sequence of
estimates of the solution that goes to infinity in norm,
fluctuating around the solution.

The standard approach to ensure that the sequence
generated by Algorithm 1 is bounded is to project it
onto a predetermined compact set K, so equation (1)
is replaced by

0n+1 = 7I'K(9,-, - anyn); (2)

where, for all 8 € R, mx(0) denotes the point in K
which is closest to 8. (We can assume, without loss
of generality, that K is convex, so the projection 7k
is well defined.) The problem with this approach is
that in the typical application, the approximate loca-
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tion of the solution is not known. To minimize the
probability that the solution lies outside the set K,
it is therefore necessary to let K be large. However,
as shown in Section 4, this can seriously curtail the
efficiency of the algorithm. In Section 3, we propose
a new algorithm which is based on the idea of bound-
ing the sequence {f,}, but we will bound it to an
increasing sequence of sets. This approach was pro-
posed earlier by Chen and Zhu (1986). Their method
uses the following equation to update 6,:

Ont1 = (0n — anYn)I{jjo,—an¥al<Mo(m)} T+

014)(60—anYall>Mqny}>

where 14 is the indicator random variable, § € R is

fixed, {M, } is an increasing sequence of positive real
numbers such that M,, — co asn — o0, and o(1) =1
and for n > 1,

n—-1

o(n) =1+ Z I{||oj—anj||>M,(j)}-
ji=1

The main problem with this approach is that when-
ever [|0, —anYn|| > My(n), the algorithm returns to a
fixed point 6. This means that it is possible to return
arbitrarily often to @ before the algorithm converges.
This can make the convergence of the algorithm very
slow, particularly when the function h is very flat
and ||6*|| > M;. The algorithm proposed in Section
3 does not have this property.

Another stochastic approximation algorithm that
deserves to be mentioned is the scaled algorithm pro-
posed by Andradéttir (1990a, 1990b, 1991a). This
algorithm uses the following equation to update 6,,:

Y, Y;?
n + n
max{e, [|YZ(|} max{f,IIYnlll}]

0n+1 = 0,, — an

where ¢ is a positive real number and Y,! and Y2 are
conditionally independent estimates of h(6,) (condi-
tional on #4,...,60,). This algorithm converges under
much more general conditions on the function h than
Algorithm 1, while maintaining the same asymptotic
rate of convergence (n~1/2). Moreover, empirical ev-
idence shows that it sometimes approaches the solu-
tion much more rapidly than Algorithm 1.

3 A PROJECTED STOCHASTIC
APPROXIMATION ALGORITHM

In the previous section, we discussed the problems as-
sociated with classical stochastic approximation algo-
rithms: they converge extremely slowly when applied
to flat functions and they often diverge when applied
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to steep functions. To make these algorithms more
robust, the sequence that they generate is often pro-
jected onto a fixed compact set K. The problem with
this approach is that usually K is large, which may
reduce the efficiency of the algorithm. We propose
instead to bound 8, to K, for all n, where {K,} is
a sequence of compact sets such that K,, C K 4, for
all n and USL, K,, = R?. This approach has several
advantages: since U, K, = ®¢, we have eliminated
the possibility of not obtaining convergence because
the solution lies outside the set K. Furthermore, it is
possible to let K; be small and to increase the size of
the sets K|, slowly. This often results in an improved
empirical performance (see Section 4).

Let {bn} be a non-decreasing sequence of positive
constants such that lim,_ o b, = 00, let K, = {8 €
R4 : |16 — 6,|] < b,} and let 7, denote the orthogonal
projection onto the set K, (m,(8) = 6 when ||6 —
01|| < b, and 7,(0) = 61 + b, (8 — 61)/||0 — 6,|| when
|16 — 61]| > b). Consider the following algorithm:

Algorithm 2
Step 0: Choose §; € R4.
Step 1: Given 0y, generate an estimate Yy, of h(6,).

Step 2: Compute

0n+1 = 7r,,(0,, - a,,Y,,).

Step 3: Letn=n+1 and go o step 1.

Algorithm 2 ensures that ||6, — 6,|| < b,_; for n >
2. It is possible to show that when the sequence {b,}
is chosen appropriately, this algorithm converges for
a large class of functions h. In particular, if b, =
blog(n + 1) for all n, where b > 0, then it is possible
to show that Algorithm 2 converges under much more
general conditions on the function h than Algorithm
1. As was the case for Algorithm 1, the sequence
{a,} of Algorithm 2 satisfies a, — 0 as n — oo and

Z;.lozl an = OO.
4 EMPIRICAL WORK

In this section, we compare the empirical behavior
of the projected version of Algorithm 1 with that of
Algorithm 2 when applied to solve the problem of
finding 6 € R such that E4{X} = 0, where X has
a normal distribution with mean 63 and variance 1.
The solution of this problem is #* = 0. As discussed
in Section 2, Algorithm 1 does not converge on this
problem in general. We can however obtain conver-
gence by projecting the sequence {f,} generated by
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this algorithm to a bounded interval containing 6"
(see equation (2)). We therefore want to compare the
performance of the projected version of Algorithm 1
with that of Algorithm 2, when applied to solving this
problem. For this purpose, we conducted the experi-
ment described below. Both algorithms were started
at #; = 10 and run for 2000 iterations. This process
was repeated 1000 times and Figure 1 shows the av-
erage performance of the two algorithms (the x-axis
shows the number of iterations (n) and the y-axis
shows the distance (|0,|) of the estimate 6, to the
solution * = 0). To be able to compare the perfor-
mance of the two algorithms more meaningfully, we
used common random numbers to estimate the er-
rors in the function evaluations. This means that for
1 <m <1000 and 1 < n < 2000, the error in the nth
function evaluation in the mth replication is the same
for both algorithms. For the purposes of this experi-
ment, we let a, = 1/n and b, = 10 x log(n + 1), for
all n. To evaluate the sensitivity of the projected
version of Algorithm 1 to the bounds on its vari-
ables, we ran the algorithm three times, bounding
the sequence {#,} to the intervals [-M, M], where
M = 20,50, 100.
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Figure 1: A Comparison of the Performance of the
Projected Version of Algorithm 1 with that of Algo-
rithm 2

Algorithm 2 converges very fast on this problem:
after 20 iterations, the average estimate of the solu-
tion is —0.28 (the 90% confidence interval is —0.28
30.16 x 10~1!) and after 2000 iterations, the average
estimate of the solution is —0.14 (the 90% confidence
interval is —0.14 +0.10 x 10~!). The performance
of Algorithm 1 depends heavily on the bounds on its
variables. If the sequence of iterates {6,,} is restricted
to the set [—~M, M], then it oscillates between the
upper and lower bounds until the length of the step
taken in iteration n (|Ya|/n ~ |h(8,)|/n ~ M3/n)
is less than the length of the interval that the se-
quence {6} is bounded to (2M), or until n > M?/2.
After that it converges quickly to the solution. We
ran the algorithm with M = 20,50, 100. After 2000
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iterations, the 90% confidence intervals were —0.46
+0.13 x 1072 when M = 20, —0.45 +0.19 x 10!
when M = 50 and 100 £+ 0 when M = 100.

5 CONCLUSION

Classical stochastic approximation algorithms have
severe problems associated with them: they converge
extremely slowly when applied to flat functions, and
they often diverge when applied to steep functions.
We have developed a new stochastic optimization al-
gorithm that is more robust than the classical algo-
rithms in that it is guaranteed to converge on a larger
class of problems. At the same time, we have ob-
served that it sometimes converges significantly faster
in practice than the classical algorithms.
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