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ABSTRACT

Simulation is a commonly used design tool in
engineering. Once a prototype design is modeled
and simulated however, many designers resort to
either trial and error, univariate perturbation or
local optimization methods to find a design which
yields the optimum simulated results. The
performance of the simulation as a function of the
design parameters is complicated (that is why a
simulation is used). There is generally no guarantee
that this function is convex. A global optimization
algorithm -- one which looks beyond any local
optima is necessary.

This paper presents a methodology for the
application of global search methods to optimizing
the results of a computer simulation. Specific global
optimization methods including simulated annealing,
genetic algorithms, and Bayesian techniques will be
discussed in terms of their strengths and weaknesses
as applied to this methodology. In particular, the
effects of simulation time, constraints,
dimensionality, and computational complexity will
be discussed as they relate to the choice of
algorithms.

1 INTRODUCTION

Many engineers rely upon simulation to guide the
process of system design.  The system is analyzed
and modeled, and a computer program is written
which (one would hope) accurately describes the
performance of the system as a function of one or
more free parameters of the design. Frequently, the
first step in the design process is to simulate the
system performance at nominal values of the design
parameters derived from some combination of
approximation, theory, past-knowledge and pure
guesswork.

If the design performance is sufficiently
quantitative such that this performance can be
represented by some real-valued function of the
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results of the simulation, then the design process
reduces to the problem of refining the values of the
design parameters to yield the best simulated
performance of the system. Unfortunately, once an
initial design has taken place, many designers will
resort to a trial and error approach of varying the
design parameters in hopes of finding the set which
will yield the best performance.

A second group of designers will go a step
further and systematically perturb the parameters
one-by-one, determining the effect of each
perturbation and attempting new solutions by
varying the parameters according to the information
gained. In effect, this second group is making a
rudimentary attempt at implementing a local
optimization algorithm.  This method has the
advantage that human intuition is being factored
into the optimization problem. However, human
patience will usually limit the duration of this
optimization and thus the accuracy of the solution.
Further, this ad hoc method of optimization does not
incorporate the wisdom of the vast multitude of
existing optimization algorithms.

This leads to a third group of designers who
employ an direct search method of optimization to
the problem. The search method makes a guess at
the values of the design parameters. The system is
simulated and the performance of the design is
determined. This performance is fed to the search
method which uses this information to derive a new
guess. The procedure continues iteratively until the
method stops, the designer decides to stop, or the
designer runs out of resources.

The methodology employed by this third
group of designers is preferable to the methods of the
other groups in all but the most trivial of designs.
The advantages are:

1) A systematic approach is taken
optimization of the design parameters;

to the
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2) Since a computer algorithm will not be bored
and quit, it can continue to run the simulation as
long as there are resources to pay for the search;

3) A computer algorithm generally runs more
efficiently in terms of both time and resources.

This third method has been discussed by many
authors including Meketon (1987), and Safizadeh
(1990). However, these discussions have been
limited to the use of local search algorithms which
tacitly assume the function to be optimized is
convex. The performance of a design (as given by a
simulation) is a fairly complicated function of the
design parameters -- if not, why would a simulation
be needed in the first place. Therefore, one would
assume that the performance function would not be
necessarily convex over the design parameter space.
This means that a global search algorithm is needed
to find the optimum solution.

Stuckman (1988a), (1990) has discussed the
use of a particular Bayesian global search algorithm
for optimizing a design via simulation. Specific
design applications using Bayesian global search
methods include control systems; Stuckman and
Laursen (1989), Stuckman and Stuckman (1989),
Stuckman, Stuckman & Lilly (1989), a
communication system; Stuckman (1988b), a
vibrometer, LSI integrated circuit, and nonstationary
queuing systems; Mockus (1989). Simulated
annealing global search algorithms have also been
applied to design optimization problems such as
computer design; Rose (1986), Leong (1986), Vecchi
and Kirkpatrick (1983) and circuit design; Siarry
and Dreyfus (1983).

This paper will compare three classes of
global search algorithms in the context of on this
problem of design optimization; specifically,
simulated annealing algorithms, genetic algorithms
and Bayesian/sampling algorithms. Section II will
discuss the overall methodology of optimizing a
design via simulation. Section III will present the
three different classes of algorithms and discuss the
important features and properties. Section IV will
discuss these properties from the context of the
design problem and give conditions where one class
of algorithm will be preferred over the other classes.
Section V will provide a summary of results and
conclusions.

2 DESIGN BY SIMULATION

Assume a system exists which is represented by some
linear or non-linear model. This design is dependent
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on a set of » bounded design parameters X = (29,
Tgy « o z,) where X ¢ S. Some particular set of
values for the design parameters, X;, represents a
possible design. Further, assume that the design
performance is sufficiently quantitative such that
this performance can be derived from the results of
the simulation. Then, the performance of a given
design can be represented as a function f(X) where
the design X, is preferred to a second design X o if
and only if f(X;) > f(Xj).

The problem of optimizing the performance
of the system then becomes the problem of
determining the values of design variables X?, that
maximize the performance function. By definition,
f(X% > f(X), for all X ¢ S. Due to the overall
generality afforded to this function, a global search
technique is needed to consider the entire solution
space rather than a local technique which might not
find the optimal solution. The overall methodology
can thus be described as follows:

1) Define the performance of a design X in terms of
some function f(X;) of the results of the simulation.

2) Utilize a global search to find the optimal set of
values of the design parameters as follows: The
global search algorithm will pick trial design values
for X. to be input to the simulation. The results of
the trial design will be found by simulation and the
performance of the trial design, f(Xi), will be
determined. This performance will be fed back to
the search which will pick the next trial design
X1 (see Figure 1). The search will continue
iteratively until the optimal values are found within
some numerical accuracy or the resources allocated
to this procedure are expended.

X
—’| Simulation

Global Optimization

£(X)

Figure 1: Global Search Applied to Simulation

There are no restrictions on the performance
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function, other than the fact that it must be real-
valued and that f(X;) > f(X) implies that X; >
X j (i.e. X, is preferred to X;J. Therefore, a designer
is"free to choose any relationship that is meaningful
to the application with little regard to complexity
(assuming the complexity is small with respect to
the complexity of the simulation itself) Thus, the
performance of a data communications system might
be determined by the number bits correctly received
and the time of broadcast for a simulated message.
If one were interested in designing the controller for
a transmission system, the performance could be a
function of acceleration, slip, and maximum torque.
The performance of the design of a fire control
system for a tank might be measured by the number
of 7kills” in a simulated battle. In short, any
attributes which are important to the design can be
built into the performance as long as they can be
measured in some quantitative way and as long as
two competing designs can be compared and
distinguished.

3 METHODS OF GLOBAL OPTIMIZATION
3.1 Bayesian/Sampling Algorithms

Most Bayesian/sampling algorithms are variations
on a method developed by H. J. Kushner (1963).
Kushner’s one-dimensional method was based on the
assumption that an unknown function could be
modeled heuristically as a sample function of a
Gaussian random process, specifically a Wiener or
Brownian motion stochastic process. Kushner was
able to show the following properties of the model:

a) the expected value of the unknown function f(x)
conditioned on all of the measurements taken is a
piecewise linear approximation of f(x) itself; and

b) the conditional variance of the approximation is
quadratic between observation points.

Kushner’s search strategy can be described at
each iteration; the next guess is chosen to be the
point in the search domain which maximizes the
probability that the function exceeds the largest
value by some positive constant conditioned upon all
past evaluation of the function, Prob[ f(X) 2>
fa®+e, | Xy, X9, - « -, Xp]. Kushner’s method
takes guesses in areas where the mean is high, i.e.
where the maximum is likely to occur. Yet, the
probabilistic search strategy dictates guesses at
regions of the search space which are relatively
unexplored once local solutions become
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“overpopulated”.

Kushner’s method 1is strictly a one-
dimensional method, however, there are many n-
dimensional Bayesian methods which are either
extensions of Kushner’s original method or similar
variations (see Easom (1990)). The common factors
are that the unknown function is modeled as a
stochastic process, and that the next guess is derived
based upon a probabilistic search strategy
conditioned upon all past evaluations of the
function.

Proposition 1 -- Bayesian Algorithms must have a
computational complexity of at least O(iz), where 1
is the number of iterations.

Discussion: a true Bayesian algorithm chooses its
next guess based upon the information achieved from
all previous guesses. In a worst-case situation, it
must review all previous guesses at each iteration.
Thus, the computation necessary at the ith iteration
is proportional to (i - 1). Therefore the total
computation for 7 iterations must be:

c = a(rl)i + g(1) (1)

a(i2 - i) + g(i) )

C

where ¢ is the computation time and g(¢) is any
additional computation time needed. This implies
that the computational complexity is at least O(z'2).
Bayesian methods require a bounded search
space. Therefore the search space is defined as

A P
S = all X; satisfying bj] < z; < b]- (3)

where z.. is the jth component of X, =12, ..n
and where b ; and b-g are, respectively, the lower
and upper bounds on"the jth component of any X i
There is some variation on how particular
algorithms are initialized. @ The most successful
methods (in terms of rate of convergence on sets of
standard test functions) require 2™ initial points in
an n-dimensional space. This is not a general
requirement of Bayesian methods and some methods
rely upon a fixed set of random starting points.
Notice however, the methods with 2" initialization
have the advantage that they are completely
deterministic. Therefore, for a given function they
will always chose the same progression of search
points.



940

3.2 Simulated Annealing Algorithms

There are many different simulated annealing
algorithms. Collins  (1990) gives annotated
bibliography of many of these methods and
applications. The general method can be explained
in two parts.

Step 1) A random starting point is chosen by the
user. Next, a new point is selected randomly from
the neighborhood of the previous point. This
neighborhood may be described by a uniform
distribution of fixed circular or square radius or by
virtually any other distribution centered around the
previous point. If the new point yields a function
evaluation, f(X), which is less than the current
minimum function value (in the case of
minimization, greater in terms of maximization),
fmin’ initially picked to be +oco, the process is
repeated, otherwise step 2 is performed.

Step 2) If the new function evaluation, f(X), is
greater than the current function minimum, f min’
then an acceptance expression is used as the decision
function to determine if the new point will be
accepted. The acceptance expression is the failsafe
which allows for the algorithm to exit the region of a
local solution by deliberately selecting a point which
is not an improvement over the previous point. This
acceptance expression can vary as the search
progresses and may be given as a Boltzmann

distribution or a Cauchy distribution.

Proposition 2 -- Simulated annealing algorithms can
have a computational complexity of O(z), where i is
the number of iterations.

Discussion: A simulated annealing algorithm choses
its next point randomly based upon the results of
only the last iteration. Even in a worst-case
situation, the algorithm will require a constant
amount of computation to derive the next guess.
Therefore the total computation for i iterations must
be:

¢ < at (4)

where ¢ is the computation time and o is some
arbitrary constant. This implies that the
computational complexity is O(z).

Simulated annealing algorithms do not
require bounded variables, thus, they attempt to
searching a space from =+ oo in each dimension. As
indicated above, the search is initialized by a single
point, chosen either randomly or by the user. These
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algorithms are, by nature, nondeterministic since the
progression of the search is dictated by a series of
random numbers.

3.3 Genetic Algorithms

Genetic algorithms are heuristic search methods
which attempt to mimic the process of natural
selection( see Goldberg (1989). These methods start
with a fixed initial population of randomly selected
points and chose new points in an evolutionary
process in attempts at finding the global optimum
point. This class of algorithms is characterized by
three common factors.

1) Selection -- The current points in the space are
ranked in terms of their fitness by their respective
function values. A probability is assigned to each
point which is proportional to its fitness and parents
(a mating pair) are randomly selected.

2) Crossover -- The new point or offspring is chosen
based upon some combination of the “genetics of the
two parents. In terms of a distance criteria, the
offspring is located somewhere between the parents
in the search space.

3) Mutation -- The location of the offspring is also
susceptible to mutation, a process which occurs with
some probability, p, where a random offset is given
offspring location.

A general genetic algorithm can be described
by the following steps.

Step 1) The search is initialized by selecting a
random population of k “parents”.

Step 2) These points are evaluated.

Step 3) Perform selection, crossover, and mutation
on a new offspring and insert it into the population.
Delete the worst member of the popolation to
maintain a fixed population size.

Step 4)
reached.

Repeat until some stopping criteria is

A common modification to the general algorithm is
the generational genetic algorithm which generates &
new offspring at once and “kills off” all of the
parents. This modification allows the algorithm to
search the same points multiple times; a feature
which allows the method to perform well on
nondeterministic functions (problems where function
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evaluations are perturbed by noise).

Proposition 3 -- Genetic Algorithms can have a
computational complexity of O(:), where i is the
number of iterations.

Discussion: Mating pairs are chosen for a fixed
population size. In a worst-case situation, the
algorithm must review a constant number of
previous guesses at each iteration.  Thus, the
computation necessary at the ith iteration is

constant . The total computation for : iterations
must be:
¢ < ai (5)

where ¢ is the computation time and o is some
arbitrary constant. This implies that the
computational complexity is O(z).

Since these algorithms allow mutation of
offspring and a random selection of mating pairs,
they are nondeterministic. Typically, these
algorithms choose the initial points from some
bounded region similar to the Bayesian methods.
However, they have the capability of operating on an
unbounded space.

3.4 Comparison of Algorithm Properties

Table 1 presents a comparison of various properties
of Bayesian, simulated annealing and genetic global
search algorithms. Notice that simulated annealing
and genetic algorithms, while much different
conceptually, have generally the same properties.
Thus a comparison of these three methods, to some
extent becomes a comparison of Bayesian methods
on one hand and simulated annealing and genetic
algorithms on the other.

Table 1: Comparison of Global Search Algorithms

Algorithm Deterministic Complex. Init. Var.
Bayesian yes O(n2) 2" bounded
Genetic no O(n) rand. unbounded

Sim. Anneal. no O(n) 1  unbounded

A complete comparison of these methods on
the basis of rate of convergence has not been
performed. However, several Bayesian methods have
been compared with a simulated annealing algorithm
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on the basis of a large set of standard test functions
by Easom[l5]. Results show that the Bayesian
methods converge more quickly. These results are
not unexpected.  Bayesian methods model the
unknown function by considering all past
observations and thus are more “intelligent” in the
selection of their next guess. This intelligence comes
at the expense of increased computational
complexity. One would expect that the same would
be true for a comparison of Bayesian vs. genetic
algorithms -- that Bayesian methods would converge
more quickly. This fact will be assumed for the
basis of this work. Thus, If rate of convergence were
the only criteria, one would always select a Bayesian
algorithm. However, there are many other
important, and often, overriding properties to be
considered. The next section will discuss these
properties and their relationship to the classes of
global search algorithms.

4 COMPARISON OF METHODS ON THE
DESIGN PROBLEM

The suitability of the algorithms discussed in the
previous section for the optimization of a design by
simulation is dependent, largely upon the properties
of the simulation to be performed. This section will
discuss the various properties of a simulation which
will have an impact upon the choice of algorithm.
The  specific  properties to be  discussed:
dimensionality, simulation length, deterministicity,
and constraints, are presented in decreasing order of
importance.

4.1 Dimensionality

Currently the initialization of the most effective
Bayesian  optimization methods require 2"
evaluations of the function in an n - dimensional
design. For this reason, these methods have been,
thus far, limited to applications with ten or fewer
dimensions.  Notice that a design of a fifty-
dimensional system would require an evaluation of
approximately 101 simulations just to initialize the
search. Conversely, simulated annealing and
genetic algorithms require a fixed number of initial
points, independent of the dimensionality of the
problem. Research is currently being performed by
several groups to attempt to modify existing
Bayesian methods for initialization with a fixed
number of points.  However, at this juncture,
simulated annealing and genetic algorithms are the
methods of choice for problems of high
dimensionality -- systems with more than 10 design
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variables.
4.2 Simulation Length

A fundamental premise of Bayesian optimization
methods is that, in the process of finding a global
solution, one wishes to minimize the number of
evaluations of the function at the expense of
increased computation time. This may not always
be the case. A more exact formulation of this
premise is that a designer wishes to minimize his or
her computational resources, R, defined as

R = A(n) + nlL (6)

where A(n) is the amount of computation time used
by the search algorithm for n iterations and L is the
amount of computation time for a single simulation.
If L is small for a given system, the resources could
be minimized by a minimizing A(n). This implies
that it might be more effective to take more
iterations of a less complex algorithm than converge
in the fewest iterations.  Therefore, given the
computational complexities presented in the previous
section, simulated annealing and genetic algorithms
would be the methods of choice if the simulation
time L where so small such that the total
computation resources would be dominated by a
Bayesian algorithm if it were used. Alternately, If
the L is large, one would be willing to wuse
substantial computational resources to minimize the
number of iterations. This implies that a Bayesian
method would be preferred in this instance.

4.3 Deterministicity

If a simulation is deterministic, it will always yield
the same performance for fixed values of the design
parameters. A nondeterministic simulation can
possibly yield different values for different runs with
the same design parameter values. The results of a
nondeterministic simulation violate a fundamental
assumption of most Bayesian algorithms -- that the
exact performance of a given guess is known.
Alternatively, simulated annealing and genetic
algorithms make no such assumption -- in fact, they
are both capable of evaluating a function at the
same location more than once.

The practical effects of using nondeterministic
data in a Bayesian algorithm have not been well
studied. It is possible that the effects would be
slight since the stochastic model is merely an
approximation of the function to be optimized.
However, the optimum value could not be
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determined to a greater accuracy than the variation
in the performance function due to the
nondeterministic nature of the simulation. One
solution would be to run the simulation k times in
order to obtain performance value with less
variation. The effect of this increased computation
should be considered when weighing the methods in
terms of simulation length.

4.4 Constraints

Bayesian algorithms require that the design variables
be bounded as in Expression (3).  Simulated
annealing and genetic algorithms are free to operate
on a bounded or unbounded search space. However,
there is rarely the case where a design parameter is
allowed to go to infinity, since infinity, while
possible in theory, is generally unattainable in
practice.  If variables are allowed to approach
infinity, the global search problem becomes ill-posed.
Convergence would not be possible since there would
always be an infinite portion of the search space
which was not explored.

Bounding the search space is desirable
regardless of the algorithm used. This can be
accomplished based upon the transformation of
variables to bounded quantities, bounding the
variables based upon some practical limitation on
their values due to implementational constraints, or
bounding  the  variables by  setting an
“approximation” for infinity -- recall, a digital
computer will not allow a variable to be infinity
anyway.

5 SUMMARY

A methodology for the application of global search
methods to optimizing the results of a computer
simulation has been presented.  Specific global
optimization methods including simulated annealing,
genetic algorithms, and Bayesian techniques have
been discussed in terms of their strengths and
weaknesses as applied to this methodology. In
particular, the effects of simulation time, constraints,
dimensionality, and computational complexity were
considered as they relate to the choice of algorithms.

Simulated annealing and genetic algorithms
perform similarly yet differ in many ways from the
class of Bayesian algorithms. Bayesian algorithms
spend additional computation time in modeling all
past values of the unknown function in an effort to
minimize the number of evaluations of the function.
These methods would be the algorithms of choice for
determining the optimal design via simulation given



Global Search Methods

the number of design variables is less than 10 and
the time required to run a single simulation is large
compared with the time it takes the algorithm to
determine the next point. Using a Bayesian
algorithm requires the design variables be bounded
in some way, and that a nondeterministic simulation
be run many times at each trial set of design
parameter values to yield an accurate approximation
of the global solution.
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