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ABSTRACT

One often uses computer simulations of queueing
systems to generate estimates of system character-
istics along with estimates of their precision. Ob-
taining precise estimates, espescially for high traf-
fic intensities, can require large amounts of com-
puter time. Average regression-adjusted controlled
regenerative estimates result from combining the two
techniques of controlled regenerative estimates and
average regression-adjusted regenerative estimates.
Combining these two techniques can create estimates
whose estimated mean-square error is much lower
than can be obtained through using either technique
alone.

1 INTRODUCTION

When simulating queueing systems one would like to
use a variance reduction technique to minimize the
resources necessary for the simulation. Iglehart and
Lewis (1979) developed several internal linear con-
trols for the estimate of the stationary waiting time in
a regenerative simulation of the M/M/1 queue. The
linear control they identified as the most suitable re-
duced the estimated variance of the controlled regen-
erative estimate standard deviation to 54% of that of
the uncontrolled estimate. Iglehart and Lewis’s re-
sults and notation are summarized in Section 2.

An asymptotic formula exists for estimating the
variance of a regenerative estimate. Unfortunately,
with this asymptotic formula the estimate of the vari-
ance of the point estimate is correlated with the origi-
nal regenerative estimate. An alternative method for
estimating the variance of the regenerative estimates
is to use multiple replications, or equivalently, sec-
tion one long replication of N cycles into m smaller
“replications” of n cycles each. While sectioning elim-
inates the correlation between the regenerative esti-
mate and the estimate of its variance, one must de-
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termine the sectioning parameters, m and n. Hei-
delberger and Lewis (1981) developed a method in-
corporating regression-adjusted and graphical tech-
niques to assist the experimenter in choosing these
parameters. Their method produces a reduced-bias
regenerative estimate along with a stable estimate of
its variance. Section 3.3.1 briefly describes their av-
erage regression-adjusted regenerative estimate.
Section 3.3.2 shows how one can use the regression-
adjusted technique of Heidelberger and Lewis (1981)
with the controlled regenerative estimates of Iglehart
and Lewis (1979). This combination of techniques
allows one to obtain estimates of the stationary wait-
ing time for the nth customer with much lower esti-
mated mean square error than by using either tech-
nique alone. Section 4 provides an example using data
from a simulation of an M/M/1 queue. In this exam-
ple the estimated mean square error for the average
regression-adjusted controlled regenerative estimate
is just 10% of the mean square error estimate for the
straightforward regenerative estimate.

2 THE CONTROL OF REGENERATIVE
ESTIMATES FOR VARIANCE REDUC-
TION

2.1 The Regenerative Estimate of the Sta-
tionary Waiting Time in an M/M/1
Queue

This section 1is condensed from Iglehart and
Lewis (1979) to provide the basis for the controlled
regenerative estimator. Although the M/M/1 queue
will be used as the example, the technique can be
applied to more general regenerative simulations.
Define the waiting time of the nth customer in an
M/M/1 queue, namely W,, as the time from the cus-
tomer’s arrival until the commencement of service.
One can show that under certain conditions, the wait-
ing time process {W, : n > 0} is a regenerative pro-
cess. When the queue is stable, W, = W as n — oo.
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Assume the zeroth customer arrives at time tg = 0,
finds the server free, and has a service time of vy. The
nth customer arrives at time ¢,, and has a service time
of v,. Define the interarrival times u, as u, = t, —
tn-1 for n > 1. Assume that the v, and u, sequences
are independent of each other and that each consists
of i.i.d. random variables. Let E[v,] = p~!, and let
E[u,] = A~ . Denote the traffic intensity by p where
p = A/, assuming that A and p are both positive and
p is finite. Assume that the traffic intensity p is less
than one so that the system is stable.

Since the queue is stable, one can show that there
exists a sequence of integer-valued random variables
{T% : k > 0} such that the customers numbered T}
arrive to find the server free and experience no waiting
in the queue. These customers start a new cycle or
busy period for the system. Let 7, = T — T, for
k > 1. Thus 7 represents the number of customers
served in the kth busy period (the length of the cycle).
Now define the sequence {Y; : k > 1} by

(Tk)-1

Y = Z W;,

j=Tk-1

for k > 1.

The random variable Y} is sum of the waiting times
in the kth busy period (the area under the function
f(-) for the cycle).

Given that the queue is a regenerative process and
is stable, one can use results on regenerative estima-
tors from Iglehart and Crane (1975, App. A) to es-
tablish that a strongly consistent point estimator for
W, based on n cycles, is

Y (n)

7(n

W(n) = (1)
where Y(n) =n~ 13 3_; Yeand #(n) = n=1 30, 7.

In practice, one does not have to estimate W for
the M/M/1 queue as when p < 1, the expected value
of W is known i.e.,

p?
EW]= ——.
A(l—p)
However, a known value for E[W] provides a basis
for comparing the bias of different estimators via the
estimated mean square error. .

When estimating the variance of W(n) using sec-
tioned multiple, independent, replications, the point
estimate, based on m replications of n busy periods
each, would be

W(m,n) = %EW,- (n). )
j=1
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One would use the variance of the sample mean of the
/Vl7j (n) to estimate the variance of W(m, n), namely

Var [W(m, n)] ie.,

s L f: (W} (n) - 7W7_(m, n))2 .
=1

W(mr") B m(m - 1) j

The estimate of the standard deviation of Lx’V(m, n)

would simply be the square root of s .
W(m,n)

2.2 The Linear Control of Iglehart and Lewis

Now that one has an estimator for the variance of
W(n), one would like to reduce the variance of W(n)
for a given number of busy periods n. Iglehart and
Lewis developed a controlled regenerative estimator
by applying a linear control to the Y on top of the
ratio in (1). One can write the controlled estimator

W'(n), as

Yi(n) _ (1/n) 357, {Yi — 6(Ci — E[C])}
T(n) 7(n)

where C; represents the value of an i.i.d. random vari-
able that is the control for the ith cycle and @ is
a coefficient chosen so as to minimize the variance
of W'(n).

One can show that asymptotically

W'(n) =

Var [/W?'(n)] = Var [W(n)] (l — Cor[C,Y — W'r]z)

where C represents Ci. Thus one would like to choose
a control C that is highly correlated with Z =Y —
Wr. Without going into all the details, Iglehart and
Lewis (1979) chose to use as a control the quantity
C = D — W/t where D was selected so as to mimic
the behavior of Y for the first two customers in each
busy period. Using this control scheme, Iglehart and
Lewis were able to reduce the estimated variance of
the controlled regenerative estimate to 54% of the
estimated variance of the crude estimate.

3 THE AVERAGE REGRESSION- AD-
JUSTED CONTROLLED REGENERA-
TIVE ESTIMATE

3.1 The Average Regression-adjusted Regen-
erative Estimate

Heidelberger and Lewis (1981)
proposed the regression-adjusted technique in order
to improve the analyst’s ability to reduce the bias of
a regenerative estimate (re) while assessing the nor-
mality /symmetry of the regenerative estimate. Their
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regression-adjusted technique exploits two aspects of
the structure of regenerative simulations.

The first aspect of the structure is the i.i.d. nature
of the busy periods. Since the busy periods are i.i.d.,
one can section a single simulation of N = m xn busy
periods into m i.i.d. simulations of n busy periods
each. Thus one can average the m estimates of

E[W(n)], namely WJ (n) for j = 1,...,m, to get
the average regenerative estimate (the are(mg,ny)
of Heidelberger and Lewis 1981). The average re
is nothing more than W(m,n) from (2). Heidel-
berger and Lewis’s (1981) idea was to compute es-
timates W(m, n) for different values of n. Let ny, for

k=1,...,p, represent p different values of n. If for
a given simulation of N busy periods one estimates

W(my,ni) for each of the p values of n, one gets
p unbiased but correlated estimates of E [W(nk )]
The second aspect that the regression-adjusted

technique exploits is the known bias structure of the
regenerative estimate i.e.,

E[W(")] = ﬂ0+,31/n+,32/n2+. . -+ﬂd/nd+- G

Estimating the coefficients in (3) to eliminate some
of the bias in the regenerative estimate leads one to
the regression-adjusted regenerative estimate.

Let Wra(N) represent the regression-adjusted re-
generative estimate of the stationary waiting time
based on a simulation of N busy periods (the rare(N)
of Heidelberger and Lewis 1981). The estimate
Wra(N) is defined as the estimate of By in (3).
To estimate fo, the p average regenerative esti-

mates W(mk,nk) are used as dependent variables
in an unweighted least-squares linear regression on
Bo+Bi/n+ -+ Ba/n®. The regression can be to
order d=1, 2, or 3 or more. For a given order d, the
regression-adjusted regenerative estimate Wra(N) is
unbiased out to terms of order 1/n?.

One needs an estimate of the variance of the
regression-adjusted estimate though. Given that one
can calculate a regression-adjusted regenerative esti-
mate from a simulation of N busy periods, the fi-
nal step of obtaining a variance estimate requires M
independent replications of the regression-adjusted
regenerative simulation. Thus in essence, one runs
the simulation until a total of M x N busy peri-

ods are completed. Let Wra(M, N) denote the aver-
aged regression-adjusted regenerative estimate formed
from M replications of N busy periods each (the
arare(m,n) of Heidelberger and Lewis, 1981). The

estimate Wra(M ,N) is simply the average of the
M independent regression-adjusted estimates. Since
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Wra(M, N) is a sample mean, one can also estimate

the variance of Wra(M , N) as the sample variance of
the M regression-adjusted estimates divided by M.

An immediate concern with forming average
regression-adjusted regenerative estimates is deter-
mining appropriate values for the various parameters
such as M, N, p, the n;y and d. Heidelberger and
Lewis (1981) describe a graphical protocol which can
assist the analyst in selecting some of these values.
For the remainder of this chapter, assume that the to-
tal number of busy periods in the simulation, namely
M x N, has been set at 200,000. The next subsec-
tion will discuss the methods for using the regression-
adjusted technique with controlled regenerative esti-
mates and the impact of ridge regression in lieu of
least-squares regression.

3.2 Using the Regression-adjusted Technique
with Controlled Estimates

Average regression-adjusted conirolled regenerative
estimates result from applying the regression-
adjusted technique to controlled re’s. The overall pro-
cedure is the same as described above in Section 3.3.1.
However, instead of using W(n) to calculate the aver-
age Te, one uses W’(n) to calculate the average con-
trolled re. The notation for the average regression-
adjusted controlled regenerative estimate is simply

W’ra(M, N).

A potential difficulty with the regression-adjusted
technique is the tendency for the least-squares re-
gression matrix columns, composed of k rows of 1,
1/n,1/n%, ..., 1/n4, to be collinear. The collinearity
can increase the variance of the regression-adjusted
regenerative estimates. Johnson and Lewis (1989)
presented results demonstrating that using ridge re-
gression in lieu of least squares regression can di-
minish the impact of the collinearity and produce
estimates with lower estimated mean square error.
Ridge regression developed from the realization that
although least-squares estimators are the minimum
variance among linear estimators, “they are not
in general minimum-mean-square-error estimators in
that class.” (Kendall and Stuart, 1979, p.92) In
the example that follows, average ridge regression-
adjusted estimates were computed using the ridge re-
gression technique of Dempster, Schatzoff and Wer-
muth (1972).
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4 THE M/M/1 QUEUE WITH TRAFFIC
INTENSITY OF .99

A simulation experiment was conducted with the pa-
rameters chosen so that the traffic intensity would
be .99 while the expected value of W was 10. The
simulation was run until 200,000 busy periods were
completed. In what follows, the term “best” estimate
will refer to the estimate which has the smallest esti-
mated mean square error (MSE). While the data will
not be able to establish which particular parameters
are optimal, it will establish trends that demonstrate
the effectiveness of using the regression-adjusted tech-
nique in combination with controlled regenerative es-
timates.

The first part of the evaluation consisted of using

the 200,000 busy periods to estimate /W?’(m,n), its
variance and mean square error, for different n where
mxn = 200,000. A sample of the results is in Table 1.
Table 1 shows the best section crude estimate was
/VI7(40,5000) with an estimated MSE of .220. It also
gows that the best sectioned controlled estimate was
W (20,10000) with an estimated MSE of .057.

Table 1 demonstrates that one can not rely solely
on the reduction on the standard deviation as a mea-
sure of effectiveness of a control. The s’/s rows con-
tain the ratio of the estimated standard deviation of
the controlled estimate to that of the crude estimate.
When evaluating controls for biased estimators, one
must consider the effect of the control on the esti-
mated mean square error in addition to its effect on
the estimated standard deviation.

Table 1 also shows the importance of selecting the
proper number of busy periods n to use to calcu-
late W/(n). Iglehart and Lewis (1979) chose n = 2000
for their estimates. They noted that for p = .99
and n = 2000, the baseline linear control estimates

W’(n)- were nonnormal and W’(m, n) had substan-
tial bias. They recommended that n be increased
beyond 2000 to alleviate these problems.

The 200,000 busy periods from the same simulation
of the M/M/1 queue with p=.99 was used to evaluate
the performance of the regression-adjusted controlled

regenerative estimate, W’ra(M , N), against both the
section controlled estimate W’(m,n) and the aver-

age regression-adjusted crude estimate Wra(M ,N).
Other factors in the evaluation were the degree, d = 1
and d = 2, the type of regression, least-squares ver-
sus ridge regression, and N, the number of busy peri-
ods used for computing each regression-adjusted con-
trolled estimate.

Table 2 and Table 3 contain average regression-
adjusted estimates of the stationary waiting time,
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crude and controlled respectively, along with esti-
mates of their standard deviation (SD) and mean
square error (MSE). Both tables indicate that for a
fixed number of busy periods equal to M x N, where
M is the number of replications of length N, the
choice of large M versus large N is important. In
both tables, the estimates of the MSE in the row for
M = 8 are each lower than the estimates in the rows
for M = 5 and M = 4. This indicates that it is
more important to have multiple regression-adjusted
estimates (large M) than to have many regenerative
estimates for forming the average regenerative esti-
mates used in the regression (large N).

A second trend in the two tables is that for both
the least squares and the ridge regression estimates,
the degree d = 1 regressions produce better MSE
estimates than the degree d = 2 regressions. For ex-
ample, in the M = 8 row in Table 2, the least squares
estimate of the MSE goes from .292 to .457 as d goes
from 1 to 2 and the ridge regression estimated MSE in
Table 2 goes from .265 to .267. These estimates also
show that increasing the degree of regression from 1
to 2 caused a much larger increase in the estimated
MSE for the least square regression estimate than for
the ridge regression estimate.

Finally, in both tables the ridge regression at degree
d = 1 produced the best average regression-adjusted
estimate. For the average regression-adjusted (crude)
estimate, the M = 8 row in Table 2 had the best es-
timated MSE of .265. This was larger than the best
section crude estimate from Table 1 of .220. How-
ever, the best average regression-adjusted linearly
controlled estimate, the M = 8 row in Table 3, had an
estimated MSE of .017. This estimate is just 8% of
the best sectioned crude estimate. The average (least-
squares) regression-adjusted estimate from the same
row has an estimated MSE of .02, again less than 10%
of the sectioned crude estimate.

In summary, as demonstrated by this simulation
of the M/M/1 queue with traffic intensity of .99,
combining the regression-adjusted technique with the
technique of linearly controlled regenerative estimates
can produce dramatic decreases in the estimated
mean square error for the estimates of the station-
ary waiting time.
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Table 1: Section estimates based on 200,000 busy periods for the stationary waiting time in an M/M/1 queue
with traffic intensity of .99 for different sample sizes n.
The Crude Regenerative Estimate

n 500 | 1000 | 2000 | 4000 | 5000 { 7000 | 8000 | 10,000
W(m,n) [ 754 | 855 | 9.32| 977 | 9.88 | 9.98 | 10.0 10.0
S.D. 248 | .336 | .405 | .485 | .455 | .526 | .527 .550
MSE 6.10 | 250 [ .621 | .287 | .220 | .277 | .279 .304

The Controlled Regenrative Estimate
W’(m,n) 8.09| 878 ] 949 | 981 | 9.77| 9.97 | 9.99 9.93

S.D. 189 | 232 | 254 | .308 | .223 | .268 | .282 .228
MSE 3.67 | 1.54 | 323 | .133 | .102 | .072 | .079 .057
s'/s .76 .69 .63 .64 .49 .51 .54 41

Table 2: Average regression-adjusted crude estimates based on M x N = 200, 000 busy periods for the stationary
waiting time in an M/M/1 queue with traffic intensity of .99 for n= 500 1000 2000 4000 5000 7000 8000 .

Least Squares Ridge
M, N d=1]d=2|d=1]d=2
8,25,000 | Wra(M,N) | 102| 104 | 101 | 102
SD. 501 | 500 | .500 | .490
MSE 292 | 457 | 265 | .267
5, 40,000 | Wra(M,N) | 10.1| 10.4| 10.1| 102
SD. 593 | 633 | 589 | .606
MSE 360 | 532 | .358 | .415
4, 50,000 | Wra(M,N) | 10.1| 104 | 10.1] 103
SD. 607 | 645 | .600 | .620
MSE 387 | 548 | .379 | .455

Table 3: Average regression-adjusted linearly controlled estimates based on M x N = 200,000 busy periods for
the stationary waiting time in an M/M/1 queue with traffic intensity of .99 for n= 500 1000 2000 4000 5000 7000
8000 .

Least Squares Ridge
M,N d=1]d=2]d=1|d=2
8, 25000 | Wrra(M,N) | 10.0 | 10.2| 10.0 | 10.1
SD. 137 | 149 | .130 | .140
MSE 020 | 061 | .017 | .024
5, 40,000 | W'ra(M,N) | 10.03| 10.2 | 10.0 | 10.1
SD. 180 | 209 | .176 | .201
MSE 033 | 073 ] 031 .054
4, 50,000 | Wra(M,N) | 10.0| 10.2| 100 | 10.0
SD. 175 | 220 | 175 | .230
MSE 032 | 080 | .031| .065
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