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ABSTRACT

A frequency domain simulation experiment is one in
which selected system parameters are oscillated sinu-
soidally to induce oscillations in one or more system
statistics of interest. A spectral (Fourier) analysis
of these induced oscillations is then performed. To
perform this spectral analysis, all oscillation frequen-
cies must be referenced to a common, independent
variable—an oscillation index. In a discrete-event
simulation, the global simulation clock is the most
natural choice for the oscillation index. However, past
efforts to reference all frequencies to the simulation
clock generally yielded unsatisfactory results. The
reason for these unsatisfactory results is explained in
this paper and a new methodology which uses the
simulation clock as the oscillation index is presented.
Techniques for implementing this new methodology
are demonstrated by performing a frequency domain
simulation experiment for a network of queues.

1 INTRODUCTION

A frequency domain simulation experiment (FDE)
is one in which selected system parameters are os-
cillated sinusoidally. Each selected parameter is as-
signed a unique frequency of oscillation. If the sys-
tem’s response is sensitive to a selected system pa-
rameter, then the sinusoidal oscillation of that pa-
rameter will—hopefully—induce similar oscillations
in the response. If so, spectral (Fourier) analysis of
these induced oscillations yields valuable information
about the system.

FDEs were first introduced to discrete-event sim-
ulation in 1981 by Schruben et. al. [Schruben and
Cogliano, 1981]. The objective was to perform in-
put parameter sensitivity analysis for factor screen-
ing in complex simulations. Since then significant
work has been done to develop FDE techniques; this
includes oscillation amplitude considerations [Jacob-
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son, 1989, driving frequency selection [Jacobson et
al., 1987)], methods for generating and analyzing the
output series [Som and Sargent, 1988]), methods of
flattening the noise spectrum [Buss, 1988] and meth-
ods for using the global simulation clock time as the
oscillation index [Jacobson et al., 1988)]. Efforts have
also been made to extend the FDE technique to meta-
modeling [Schruben and Cogliano, 1987], [Sanchez
and Buss, 1987] and (Som et al., 1987], to the de-
sign of algorithms for simulation optimization [Mor-
rice and Schruben, 1989], [Schruben, 1986] and to
gradient estimation [Jacobson, 1990]. However, in a
recent work, Sargent et. al [Sargent and Som, 1988]
have pointed out that even when performed correctly
FDEs, as they currently exist, have limited applica-
tion.

In a FDE, all frequencies are measured relative to a
common independent variable—an oscillation index.
In most of the available FDE literature [Buss, 1988],
[Jacobson et al., 1987]-[Jacobson, 1990), [Morrice
and Schruben, 1989])-[Sanchez and Schruben, 1986],
[Schruben and Cogliano, 1981}-[Som et al., 1987], the
systems analyzed have been quite simple. For these
simple systems, choosing some discrete simulation pa-
rameter, e.g. job number in a single-server queue, as
the oscillation index yields satisfactory results. How-
ever, in more complex systems, e.g. an open network
of queues, jobs do not necessarily leave the system
in their order of arrival and so, as observed in [Buss,
1988) and [Jacobson et al., 1988), choosing a discrete
simulation parameter as the oscillation index may, in
this case, require re-ordering of the output before it
can be analyzed. Other more complex systems, e.g.
a closed network of queues, are easily envisioned for
which there may not be any natural discrete simula-
tion parameter to serve as the oscillation index.

An inherent feature of virtually all discrete-event
simulations, is the need to keep track of time via a
global simulation clock. For example, in a next-event
simulation, events are scheduled in time and the sim-
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Figure 1: Single-Server FIFO Queue.

ulation clock is advanced from one event time to the
next as the simulation progresses. In this manner the
global simulation clock time becomes a natural con-
tinvous variable with respect to which all dynamic
variables are referenced. Thus, the global simulation
clock time is a natural choice for the FDE oscilla-
tion index. Attempts were first made by Jacobson
et. al. [Jacobson et al., 1988] to use the global sim-
ulation clock as the oscillation index. However, they
concluded that the “ -- global clock is not necessar-
illy a good index for running frequency domain ex-
periments” and a discrete oscillation index should be
used whenever possible. We disagree.

In this paper, we first explain why past efforts to
reference all frequencies to the global simulation clock
generally yielded unsatisfactory results. Then we in-
troduce a technique for performing FDEs which uses
the simulation clock as the oscillation index. The
technique is based upon histograming data sampled
at random event times. This technique is versatile,
efficiently implementable and resilient to noise. The
technique is illustrated by performing a FDE for a
network of queues.

2 THE FDE INDEXING PROBLEM

In a recent paper Jacobson et. al.[Jacobson et al.,
1988] suggested using the global simulation clock as
the FDE index. They considered an M/M/1 queuing
system [Figure 1] and oscillated the arrival rate ()
and the service rate (v) as:

v(t) = v(0) + asin(27mw;t)
A(t) = A(0) + o sin(27wat) (1)

where v(0), A(0) represent the nominal service and
arrival rates respectively, o determines the ampli-
tude of oscillation, w; and ws represent the frequency
of oscillation of the service and arrival rates respec-
tively and t is the global simulation clock time. The
time spent by each customer in the system was se-
lected as the response parameter of interest and the
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response power spectrum was calculated using the
Blackman-Tukey technique for power spectral density
estimation[Hardin, 1986]. Jacobson et. al. observed
that the response power spectrum did not necessarily
exhibit a distinct peak at the frequency of oscillation,
even though the response is known to be sensitive to
the arrival and service rates.

In [Jacobson et al., 1988] Jacobson et. al. also
discusses a FDE performed on a simple manufac-
turing assembly station using the global simulation
clock time as the oscillation index. The response was
a record of the difference between each completion
time of the assemble operation and the correspond-
ing arrival time of the latest arriving component part.
The response power spectrum was estimated using
once again the Blackman-Tukey technique. Results
of this experiment also demonstrated that the use of
the global simulation clock as the oscillation index
did not yield well-defined peaks in the power spec-
trum. From these two experiments Jacobson et. al.
concluded that the global simulation clock is not a
suitable index for FDEs and that, instead, a discrete
oscillation index should be used whenever possible.

We can explain the reason for the unsatisfactory
results in [Jacobson et al, 1988]. First observe
that in order to perform a spectral analysis, sam-
ples should be taken at equally spaced time intervals.
This can be demonstrated with three simple exper-
iments based upon sampling the deterministic func-
tion z(t) = sin(2nwt) at times defined by t; = t;_1+¢€;
for all ¢ (with ¢y = 0).

In experiment 1, z(t) is sampled at equal time in-
crements, i.e. ¢ = 1 for all 2. In experiment 2,
z(t) is sampled at slightly random time increments
i.e. € is an iid sequence of random variables uni-
formly distributed between 0.0 and 2.0 for all ¢. In
experiment 3, z(t) is sampled at random time incre-
ments i.e ¢; is an iid sequence of random variables
exponentially distributed with mean 1 for all 7.

For each of these three experiments the average in-
tersample time is 1. In each case the discrete Fourier
transform (DFT) of the sampled data was calculated
and the amplitude of the (complex) result was plotted
against the corresponding frequency.

Figures 2a, 3a and 4a represent z(t;) versus the
sample index 7 for experiments 1, 2 and 3 respectively;
figures 2b, 3b and 4b represent the corresponding
DFT energy spectrum. Figure 5 represents z(t;) ver-
sus t; for the three experiments. From these figures it
is observed that even when the sampled function is a
deterministic function of time, spectral estimates de-
teriorate (the energy peaks become more smeared)
as the randomness of the inter-sampling times in-
creases. This illustrates why equally spaced samples
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Figure 3: Data Series and corresponding spectrum
obtained by sampling a sine wave at ”slightly ran-
dom” intervals; w = 0.0625, 1024 samples

Figure 2: Data Series and corresponding spectrum
obtained by sampling a sine wave at equal intervals;
w = 0.0625, 1024 samples
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w =0.0625, 1024 samples

; Figure 5: Data Series vs time for the 3 experiments
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Figure 6: Data Series and corresponding spectrum
obtained by naively using the global-simulation clock
as the time index, as given in section 2. Input w =
0.007812

are needed when the sampled function is determinis-
tic. If the sampled function is stochastic the added
randomness inherent in the samples serves to further
smear the spectral energy peaks. Therefore, in or-
der to perform spectral analysis of samples from a
time-varying stochastic process, equally spaced sam-
ples are necessary.

We can further demonstrate the need for equally
spaced samples by performing a FDE of a FIFO
M/M/1 queue. Customers arrive according to a non-
stationary Poisson process with the arrival rate given
by

A(t) = M0) + asin(27wt) (2)

where A(0) represents the nominal arrival rate, o is
the amplitude of oscillation, and w is the frequency
of oscillation. The service rate is fixed at v = 1. The
wait experienced by each customer is selected as the
system response of interest.

The wait times for 4096 customers were recorded,
with A(0) = 0.55, & = 0.45 and w = 0.007812 and the
corresponding DFT computed. Figure 6 represents
the results of this experiment. Consistent with Ja-
cobson’s results, the response spectrum (Figure 6b)
does not have a distinct spike at the frequency of
oscillation. This unsatisfactory result is caused by
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sampling non-uniformity. The samples are observed
at arrivals (or departures); these times are random
and clearly not uniformly spaced in time.

The conclusion here is that if the global simulation
clock is the oscillation index then it is not sufficient
to naively sample at the processing time of each cus-
tomer. As Jacobson et. al. used this sampling scheme
they failed to obtain satisfactory results in using the
global simulation clock. In the next section of this pa-
per we demonstrate that the global simulation clock
can be used as the oscillation index—provided the
response data is properly sampled and Fourier ana-
lyzed.

3 A NEW METHODOLOGY

As discussed in section 2, a major issue that has yet to
be resolved for performing frequency domain analysis
is the selection of a suitable oscillation index. In this
section we present a solution to this index selection
problem.

As observed in the previous section, sampling the
system response at random event times results in
non-uniformly spaced samples. Instead, if we divide
the (simulation) time interval of interest into equally
spaced subintervals and sample by counting the num-
ber of system response events in each subinterval, we
obtain uniformly spaced samples. Spectral (Fourier)
analysis can then be performed. This methodology
uses the global simulation clock as the oscillation in-
dex.

Let {N(t), t > 0} be a non-homogeneous, periodic
counting process, whose rate function A(t) > 0 is var-
ied sinusoidally with time. That is, N(t) represents
the number of events that occur in (0,t]. Let m(t)
be the expectation function for the counting process;
i.e. m(t) = E[N(t)]. If m(t) is differentiable for all ¢
then

t+6
m(t + 8) — m(t) = / \pdy ()

provided dm(t)/dt is bounded on [t,t + 6] and is con-
tinuous for all but finitely many points in (¢, + 6]
[Law and Kelton, 1982]. Hence we have

m(t +6) —m(t) _ p(t,0)
) -6 (4)

A(t) =~

where 3(t,6) = m(t+6)—m(t) is the expected number
of events in the interval (¢, + 6].

From Equation (4) it follows that we can obtain
an estimate of A(t) by dividing the time line t > 0
into subintervals of small length 6 and accumulating
the number of events that occur in each subinterval,
averaged over several replications. In this way, in a
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simulation study, if the rate function of a system pa-
rameter is oscillated at an assigned frequency then
the rate function of a response parameter of inter-
est can be estimated. At least two methods can be
used for accumulating the number of events in each
subinterval.

3.1 Histogram Method

This method attempts to approximate Equation (4)
by building a histogram for the event counts. A his-
togram of the event counts is created for each replica-
tion. At the end of the simulation, a DFT of the his-
togram is computed to produce the required spectral
estimate. Several replications are performed and to
reduce noise the ensemble average of the histogram
counts is used as the basis for the Fourier analysis.
The choice of the number of bins is important. With
large bin sizes the events will not be sufficiently sam-
pled and the corresponding spectral estimate will be
corrupted by aliasing. Very small bins on the other
hand may result in empty bins. For the purpose of the
simulations presented later, the time axis was scaled
so that a unit bin size could be used.

As a simple illustration of the histogram method,
a non-stationary Poisson process was simulated using
the thinning method [Law and Kelton, 1982). The
rate function was given by Equation (2) with A(0) =
0.55 and « = 0.45. The elapsed simulation time was
4096.

Figures 7a and 8a illustrate a portion of the re-
sulting ensemble averaged histogram corresponding
to two different values of w. In each case, the his-
togram is a somewhat noisy estimate of A(t). The
noise level could be reduced, if desired, by averaging
additional replications. However, as Figures 7b and
8b illustrate, additional noise suppression is not nec-
essary because—as desired—the corresponding spec-
tral estimates exhibit a distinct spike at the oscilla-
tion frequency of the rate function (w).

3.2 Differentiation Method

The histogram method just illustrated is, essentially,
an integration (low-pass filtering) technique. An al-
ternate approach is to observe N(t) at uniformly
spaced sampling times ¢t = §,26,36 - - - for some small
increment 6. These samples can then be ensemble
averaged over several replications with the result nu-
merically differenced to yield an estimate of A(t) at
the sampling times. These estimates can then be
Fourier analyzed. We refer to this method as the
differentiation method. Our experience to date, how-
ever, has been that the differentiation method tends
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obtained by using the Histogram method as given in
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Figure 8: Data series and corresponding spectrum
obtained by using the Histogram method as given in
section 3.1. w = 0.031250; 6t = 1.0. Simulation time
4096.0
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Figure 9: A Network of Single server FIFO Queues

to produce more noisy spectral estimates than the his-
togram method. For that reason, in the two example
to follow the histogram method is used.

4 EXAMPLES

This section illustrates two applications of the his-
togram method to perform a FDE for a single-server
queuing system (Figure 1) and a network of queues
(Figure 9).

4.1 Single-Server FIFO Queue

In vivid contrast to the failed spectral analysis pre-
sented in Figure 6, Figures 10 and 11 illustrate the
result of using the histogram method to analyze the
departure rate from the single-server queue discussed
in section 2. Two different oscillation frequencies
w = 0.007812 and 0.031250 were simulated. In each
case, the response spectra exhibits a distinct spike
at the oscillation frequency, clearly indicating the ef-
fectiveness of uniform sampling implemented via the
histogram method.

4.2 Network of FIFO queues

As a second example, consider the network of queues
in Figure 9. Each node is a single-server M/M/1
FIFO queue with service rate v = 2. External arrivals
only occur at node 1 according to a non-stationary
Poisson process with rate given by Equation (2). As
before A(0) = 0.55 and o = 0.45. The oscillation fre-
quency is w = 0.031250. After exiting one node, a
job selects its next destination (another node or out-
side world) consistent with the transition probability
associated with each path. Once again the depar-
ture rate at each node was selected as the response
parameter and the histogram method was used to ob-
tain the required response spectrum. Figure 12 de-
picts the response spectra for each node. As in the
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Figure 10: Spectrum of Departure Histogram; A(0) =
0.55; a = 0.45; w = 0.007812; Avg. Utilization=0.55
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Figure 11: Spectrum of Departure Histogram; A(0) =
0.55; a = 0.45; w = 0.031250; Avg. Utilization=0.55
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much simpler case of a single-server queue, the re-
sponse spectra at each node exhibits a distinct spike
at the oscillation frequency, clearly indicating the ef-
fectiveness of uniform sampling implemented via the
histogram method.

5 CONCLUSIONS

In the paper we have discussed why the global simula-
tion clock time is the most natural choice for the FDE
oscillation index. The reasons behind the failure of
past efforts to reference all the frequencies in a FDE
to the global simulation clock are also presented. A
new methodology for performing frequency domain
analysis of discrete-event simulation experiment is
proposed. The new methodology is based upon the
Fourier (spectral) analysis of stochastic systems and
uses the global simulation clock time as the oscilla-
tion index. The histogram method for implementing
this methodology is discussed. Using this method it is
possible to analyze stochastic systems subject to non-
stationary inputs - a difficult analytical problem. The
effectiveness of this method is demonstrated by apply-
ing it to a single-server FIFO queue and a network of
single-server queues. As claimed, the method is ef-
ficiently implementable, resilient to noise and lends
itself efficiently to any simulation model being ana-
lyzed using frequency domain methods.
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Figure 12: Spectrum of Departure Histograms for
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